Skip to main content
Log in

Regulation of Arabidopsis thaliana Physiological Responses Through Exogenous Electrical Field Exposures with Common Lab Equipment

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plants have many of the same electrochemical regulatory components as animals, such as sensory receptors, neurotransmitters, and voltage regulated ion channels. Prior studies have established that exogenous electrical fields could improve plant growth, agricultural yields, germination, secondary metabolite production, and disease resistance. Unfortunately, the potential benefits and mechanism of whole plant electrophysiology studies are difficult to organize into a cohesive model as they vary across organism, treatment type and method, or require elaborate/costly equipment. In many of these studies it is often difficult, if not impossible, to distinguish between electrical field-specific effects and the interference of unaddressed confounding variables such as changes in temperature, dissolved oxygen concentration, and pH. Plant electrophysiology is just beginning to be understood, and standardization and consistency are crucial if the systemic effects of this intriguing interdisciplinary phenomenon are to be grasped. Here we have developed a simple low-cost system from common lab supplies (largely electrophoresis equipment) which maintains temperature, pH, and dissolved oxygen at relatively constant levels throughout the treatment time. The model plant, Arabidopsis thaliana, was evaluated in this system and the subsequent effects on germination, growth, photopigments, and protein content are presented here. Our findings support the model that plants possess a molecular/electrical memory/battery which integrates information to drive biological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DS, Levin M (2013) Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 352:95–122. doi:10.1007/s00441-012-1329-4

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69

  • Bao S, Ma Z (2011) Research on the aging property of electric field influence on corn seeds. Adv Comput Sci Intell Syst Environ 106:91–96

    Article  Google Scholar 

  • Blackiston DJ, McLaughlin KA, Levin M (2009) Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle Georget Tex 8:3519–3528. doi:10.4161/cc.8.21.9888

    Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

  • Bugbee BG, Salisbury FB (1985) An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and amberlite IRC-50 as pH buffers for nutrient solution studies. J Plant Nutr 8:567–583

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Cole IB, Murch SJ (2006) Neurotransmitters, neuroregulators and neurotoxins in the life of plants. Can J Plant Sci 86:1183–1888. doi:10.4141/P06-034

    Article  CAS  Google Scholar 

  • Dymek K, Dejmek P, Panarese V et al (2012) Effect of pulsed electric field on the germination of barley seeds. LWT-Food Sci Technol 47:161–166. doi:10.1016/j.lwt.2011.12.019

    Article  CAS  Google Scholar 

  • Eing CJ, Bonnet S, Pacher M et al (2009) Effects of nanosecond pulsed electric field exposure on arabidopsis thaliana. IEEE Trans Dielectr Electr Insul 16:1322–1328. doi:10.1109/TDEI.2009.5293945

    Article  Google Scholar 

  • Ernst O, Zor T (2010) Linearization of the bradford protein assay. J Vis Exp. doi:10.3791/1918

    PubMed  PubMed Central  Google Scholar 

  • Ewing MA, Robson AD (1991) The use of MES buffer in early nodulation studies with annual Medicago species. Plant Soil 131:199–206. doi:10.1007/BF00009449

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257. doi:10.1111/j.1365-3040.2006.01614.x

    Article  CAS  PubMed  Google Scholar 

  • Fromm J, Lautner S (2012) Generation, transmission, and physiological effects of electrical signals in plants. In: Volkov AG (ed) Plant electrophysiology. Springer, Berlin, pp 207–232

    Chapter  Google Scholar 

  • Gallé A, Lautner S, Flexas J, Fromm J (2015) Environmental stimuli and physiological responses: the current view on electrical signalling. Environ Exp Bot 114:15–21. doi:10.1016/j.envexpbot.2014.06.013

    Article  Google Scholar 

  • Geisler M, Wang B, Zhu J (2014) Auxin transport during root gravitropism: transporters and techniques. Plant Biol 16:50–57. doi:10.1111/plb.12030

    Article  PubMed  Google Scholar 

  • Goto E, Both AJ, Albright LD et al (1996) Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Hortic 440:205–210

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Becker D (1994) Green circuits: the potential of plant specific ion channels. In: Palme K (ed) Signals and signal transduction pathways in plants. Springer, New York, pp 401–414

    Chapter  Google Scholar 

  • Hedrich R, Salvador-Recatal V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21:376–387

  • Iwata S, Okumura T, Muramoto Y, Shimizu N (2011) Influence of AC electric field on plant growth. In: 2011 Annual report conference on electrical insulation and dielectric phenomena (CEIDP), pp 179–182

  • Kanwischer M (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

  • Kaimoyo E, Farag MA, Sumner LW et al (2008) Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Biotechnol Prog 24:377–384. doi:10.1021/bp0703329

    Article  CAS  PubMed  Google Scholar 

  • Köse C (2007) Effects of direct electric current on adventitious root formation of a grapevine rootstock. Am J Enol Vitic 58:120–123

    Google Scholar 

  • Kurkdjian AC (1995) Role of the Differentiation Of Root Epidermal Cells In Nod Factor (from Rhizobium meliloti)-induced root-hair depolarization of Medicago sativa. Plant Physiol 107:783–790. doi:10.1104/pp.107.3.783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin M (2011) Endogenous bioelectric signals as morphogenetic controls of development, regeneration, and neoplasm. In: The physiology of bioelectricity in development, tissue regeneration and cancer, chap 3, pp 39–89

  • Mishra (2016) Bio molecular characterization of impact of weak electric field on the plant system. Indian J Sci Res 6:25–29

    Google Scholar 

  • Moon J-D, Chung H-S (2000) Acceleration of germination of tomato seed by applying AC electric and magnetic fields. J Electrost 48:103–114. doi:10.1016/S0304-3886(99)00054-6

    Article  Google Scholar 

  • Nechitailo G, Gordeev A (2001) Effect of artificial electric fields on plants grown under microgravity conditions. Adv Space Res 28:629–631. doi:10.1016/S0273-1177(01)00370-2

    Article  CAS  PubMed  Google Scholar 

  • Okumura T, Iwata S, Muramoto Y, Shimizu N (2011) Optimum DC electric field strength for growth acceleration of thale cress. In: 2011 Annual report conference on electrical insulation and dielectric phenomena (CEIDP). IEEE, pp 168–171

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  PubMed  Google Scholar 

  • Sagane Y, Nakagawa T, Yamamoto K et al (2005) Molecular characterization of maize acetylcholinesterase: a novel enzyme family in the plant kingdom. Plant Physiol 138:1359–1371. doi:10.1104/pp.105.062927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenz HG, Weisenseel MH (1993) Electrotropism of Maize (Zea mays L.) Roots (Facts and Artifacts). Plant Physiol 101:1107–1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Tataranni G, Sofo A, Casucci C, Scopa A (2013) Different root growth patterns of tomato seedlings grown hydroponically under an electric field. Plant Root 7:28–32. doi:10.3117/plantroot.7.28

    Article  CAS  Google Scholar 

  • Volkov AG (ed) (2012) Plant electrophysiology. Springer, Berlin

    Google Scholar 

  • Volkov AG (2016) Biosensors, memristors and actuators in electrical networks of plants. Int J Parallel Emergent Distrib Syst. doi:10.1080/17445760.2016.1141209

    Google Scholar 

  • Volkov AG, Shtessel YB (2016) Propagation of electrotonic potentials in plants: experimental study and mathematical modeling. AIMS Biophys 3:358–379

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2008) Kinetics and mechanism of dionaea muscipula trap closing. Plant Physiol 146:694–702. doi:10.1104/pp.107.108241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov AG, Foster JC, Ashby TA et al (2010) Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant Cell Environ 33:163–173. doi:10.1111/j.1365-3040.2009.02066.x

    Article  PubMed  Google Scholar 

  • Wawrecki W, Zagórska-Marek B (2007) Influence of a weak DC electric field on root meristem architecture. Ann Bot 100:791–796. doi:10.1093/aob/mcm164

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigand M, Kemna A (2017) Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems. Biogeosciences 14:921–939. doi:10.5194/bg-14-921-2017

    Article  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. doi:10.1016/S0176-1617(11)81192-2

    Article  CAS  Google Scholar 

  • Wessler I, Kirkpatrick C (2016) Detection of non-neuronal acetylcholine. In: Myslivecek J, Jakubik J (eds) Muscarinic receptor: from structure to animal models. Springer, New York, pp 205–220

    Chapter  Google Scholar 

  • Ye H, Huang L-L, Chen S-D, Zhong J-J (2004) Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotechnol Bioeng 88:788–795. doi:10.1002/bit.20266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Palmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haire, T., Patel, D., Patel, K. et al. Regulation of Arabidopsis thaliana Physiological Responses Through Exogenous Electrical Field Exposures with Common Lab Equipment. J Plant Growth Regul 37, 278–285 (2018). https://doi.org/10.1007/s00344-017-9725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9725-3

Keywords

Navigation