Skip to main content
Log in

Modulation of Reserve Mobilization by Sucrose, Glutamine, and Abscisic Acid During Seedling Establishment in Sunflower

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We carried out in vitro feeding experiments using sunflower as a model to differentiate the modulatory effects of metabolites (sucrose and glutamine) and hormones (gibberellic acid and abscisic acid) on reserve mobilization, metabolite partitioning, and key enzyme activities. Exogenous sucrose negatively not only modulated the mobilization of carbon reserves (oils and starch), but it also delayed the degradation of nitrogen reserves (storage proteins) in the cotyledons. Similarly, exogenous glutamine negatively not only modulated storage protein hydrolysis, but it also retarded oil and starch degradation. Different from the metabolites, exogenous abscisic acid affected only the mobilization of oils and storage proteins. Sucrose and glutamine caused non-reducing sugar accumulation in the cotyledons and axis, but abscisic acid did not change the content of these compounds in both seedling parts. Curiously, glutamine failed to cause amino acid accumulation in the cotyledons and abscisic acid increased the amino acid content in both cotyledons and axis. Gibberellic acid did not stimulate reserve mobilization and metabolite consumption. Although the mobilization of oils, storage proteins, and starch has been delayed by sucrose and glutamine, these metabolites augmented the activity of isocitrate lyase, acid proteases, and amylases. Only abscisic acid reduced amylase activity and increased glutamine synthetase activity. Accordingly, sucrose and glutamine exert a “crossed effect” on reserve mobilization, that is, sucrose delays storage protein hydrolysis and glutamine retards oil and starch degradation. These effects may be mediated by non-reducing sugars and they are, at least in part, different from those exerted by abscisic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen RD, Trelease RN, Thomas TL (1988) Regulation of isocitrate lyase gene expression in sunflower. Plant Physiol 86:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barduche D, Paiva R, Lopes MA, Paiva E (1999) Effect of ABA and GA3 on protein mobilization in embryos and cotyledons of angico [Anadenanthera peregrina (L.) speg] seeds during germination. Braz Arch Biol Technol 42

  • Bau HM, Mohtadi-nia DJ, Mejean L, Debry G (1983) Preparation of colorless sunflower protein products: effect of processing on physicochemical and nutritional properties. J Am Oil Chem Soc 60:1141–1148

    Article  CAS  Google Scholar 

  • Beevers L (1968) Protein degradation and proteolytic activity in the cotyledons of germinating pea seeds (Pisum sativum). Phytochem 7:1837–1844

    Article  CAS  Google Scholar 

  • Berteli F, Corrales E, Guerrero C, Ariza MJ, Pilego F, Valpuesta FW (1995) Salt stress increases ferredoxin-dependent glutamate synthase activity and protein level in the leaves of tomato. Physiol Plant 93:259–264

    Article  CAS  Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H, Nonogaki H (2012) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York, p 392

    Google Scholar 

  • Borek S, Nuc K (2011) Sucrose controls storage lipid breakdown on gene expression level in germinating yellow lupine (Lupinus luteus L.) seeds. J Plant Physiol 168:1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Borek S, Ratajczak W (2002) Sugars as a metabolic regulator of storage protein mobilization in germinating seeds of yellow lupine (Lupinus luteus L.). Acta Physiol Plant 24:425–434

    Article  CAS  Google Scholar 

  • Borek S, Ratajczak L (2010) Storage lipids as a source of carbon skeletons for asparagine synthesis in germinating seeds of yellow lupine (Lupinus luteus L.). J Plant Physiol 167:717–724

    Article  CAS  PubMed  Google Scholar 

  • Borek S, Ratajczak W, Ratajczak L (2003) A transfer of carbon atoms from fatty acids to sugars and amino acids in yellow lupine (Lupinus luteus L.) seedlings. J Plant Physiol 160:539–545

    Article  CAS  PubMed  Google Scholar 

  • Borek S, Ratajczak W, Ratajczak L (2006) Ultrastructural and enzymatic research on the role of sucrose in mobilization of storage lipids in germinating yellow lupine seeds. Plant Sci 170:441–452

    Article  CAS  Google Scholar 

  • Borek S, Kubala S, Kubala S (2012a) Regulation by sucrose of storage compounds breakdown in germinating seeds of yellow lupine (Lupinus luteus L.), white lupine (Lupinus albus L.) and Andean lupine (Lupinus mutabilis Sweet): I. Mobilization of storage protein. Acta Physiol Plant 34:701–711

    Article  CAS  Google Scholar 

  • Borek S, Pukacka S, Michalski K (2012b) Regulation by sucrose of storage compounds breakdown in germinating seeds of yellow lupine (Lupinus luteus L.), white lupine (Lupinus albus L.) and Andean lupine (Lupinus mutabilis Sweet). II. Mobilization of storage lipid. Acta Physiol Plant 34:1199–1206

    Article  Google Scholar 

  • Borek S, Kubala S, Kubala S (2013) Diverse regulation by sucrose of enzymes involved in storage lipid breakdown in germinating lupin seeds. Acta Physiol Plant 35:2147–2156

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chell RM, Sundaram TK, Wilkinson AE (1978) Isolation and characterization of isocitrate lyase from a thermophilic Bacillus sp. Biochem J 173:165–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comai L, Dietrich RA, Maslyar DJ, Baden CS, Harada JJ (1989) Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Plant Cell 1:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies HV, Chapman JM (1979) The control of food mobilization in seeds of Cucumis sativus L. II. The role of the embryonic axis. Planta 146:585–590

    Article  CAS  PubMed  Google Scholar 

  • De Bellis L, Ismail I, Reynolds SJ, Barret MD, Smith SM (1997) Distinct cis-acting sequences are required for the germination and sugar responses of the cucumber isocitrate lyase gene. Gene 197:375–378

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:248–254

    Article  Google Scholar 

  • Ellarbi MB, Khemiri H, Jridi T, Hamida JB (2009) Purification and characterization of α-amylase from safflower (Carthamus tinctorius L.) germinating seeds. C R Biol 332:426–432

    Article  Google Scholar 

  • Eprintsev AT, Fedorin DN, Salnikov AV, Igamberdiev AU (2015) Expression and properties of the glyoxysomal and cytosolic forms of isocitrate lyase in Amaranthus caudatus L. J Plant Physiol 181:1–8

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Lynch T (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garciarrubio A, Legaria JP, Covarrubias AA (1997) Abscisic acid inhibits germination of mature Arabidopisis seeds by limiting the availability of energy and nutrients. Planta 203:182–187

    Article  CAS  PubMed  Google Scholar 

  • Graham IA (2008) Storage oil mobilization in seeds. Annu Rev Plant Biol 59:115–142

    Article  CAS  PubMed  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6:761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haba P, Cabello P, Maldonado JM (1992) Glutamine synthetase isoforms appearing in sunflower cotyledons during germination—effects of light and nitrate. Planta 186:577–581

    Article  PubMed  Google Scholar 

  • Herrera-Rodríguez MB, Maldonado JM, Pérez-Vicente R (2006) Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. J Plant Physiol 163:1061–1070

    Article  PubMed  Google Scholar 

  • Kern R, Chrispeels MJ (1978) Influence of the axis on the enzymes of protein and amide metabolism in the cotyledon of mung bean seedlings. Plant Physiol 62:815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kötting O, Kossmann J, Zeeman SC, Lloyd JR (2010) Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol 13:321–329

    Article  PubMed  Google Scholar 

  • Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182

    Article  CAS  PubMed  Google Scholar 

  • Lehmann T, Ratajczak L (2008) The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C storage material to asparagine in germinating seeds of yellow lupine. J Plant Physiol 165:149–158

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol 128:472–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Anal Chem 22:1156–1158

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morris DL (1948) Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107:111–114

    Article  Google Scholar 

  • Müntz K (2007) Protein dynamics and proteolysis in plant vacuoles. J Exp Bot 58:2391–2407

    Article  PubMed  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating source. Plant Soil 370:1–29

    Article  CAS  Google Scholar 

  • Peoples MB, Faizah AW, Reakasem BE, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. ACIAR, Canberra, p 76

  • Pfeiffer I, Kutschera U (1996) Sucrose metabolism and lipid mobilization during light-induced expansion of sunflower cotyledons. J Plant Physiol 147:553–558

    Article  CAS  Google Scholar 

  • Pritchard SL, Charlton WL, Baker A, Graham IA (2002) Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J 31:639–647

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna V, Rao PR (2005) Axial control of protein reserve mobilization during germination of indian bean (Dolichos lablab L.) seeds. Acta Biol Szeged 49:23–27

    Google Scholar 

  • Reynolds SJ, Smith SM (1995) Regulation of expression of the cucumber isocitrate lyase gene in cotyledons upon seed germination and by sucrose. Plant Mol Biol 29:885–896

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    Article  CAS  PubMed  Google Scholar 

  • Tan-Wilson AL, Wilson KA (2012) Mobilization of seed protein reserves. Physiol Plant 145:140–153

    Article  CAS  PubMed  Google Scholar 

  • Theodoulou FL, Eastmond PJ (2012) Seed storage oil catabolism: a story of give and take. Curr Opin Plant Biol 15:322–328

    Article  CAS  PubMed  Google Scholar 

  • Thomsen HC, Eriksson D, Møller IS, Schjoerring JK (2014) Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci 19:656–663

    Article  CAS  PubMed  Google Scholar 

  • To JPC, Reiter WD, Gibson SI (2002) Mobilization of seed storage lipid by Arabidopsis seedling is retarded in the presence of exogenous sugars. BMC Plant Biol 2:1–11

    Article  Google Scholar 

  • Tonini PP, Purgatto E, Buckeridge MS (2010) Effects of abscisic acid, ethylene and sugars on the mobilization of storage proteins and carbohydrates in seeds of the tropical tree Sesbania virgata (Leguminosae). Ann Bot 106:607–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Handel E (1968) Direct microdetermination of sucrose. Anal Biochem 22:280–283

    Article  PubMed  Google Scholar 

  • Vanni P, Giachetti E, Pinzauti G, McFadden B (1990) Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comp Biochem Physiol 95B:431–458

    CAS  Google Scholar 

  • Voigt EL, Almeida TD, Chagas RM, Ponte LFA, Viégas RA, Silveira JAG (2009) Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. J Plant Physiol 166:80–89

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochem 71:1610–1614

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowships, Banco do Nordeste do Brasil (BNB), CNPq, and Universidade Federal do Rio Grande do Norte (UFRN) for funding and Heliagro Agricultura e Pecuária Ltda (MG, Brazil) for the sunflower seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Luiz Voigt.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros-Galvão, T., de Oliveira, D.F.A., de Macêdo, C.E.C. et al. Modulation of Reserve Mobilization by Sucrose, Glutamine, and Abscisic Acid During Seedling Establishment in Sunflower. J Plant Growth Regul 36, 11–21 (2017). https://doi.org/10.1007/s00344-016-9611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9611-4

Keywords

Navigation