Skip to main content
Log in

Effects of Combined Abiotic Stresses on Growth, Trace Element Accumulation, and Phytohormone Regulation in Two Halophytic Species

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Trace element contamination of lands is a serious environmental problem that limits yield and threatens human health. To study the combined effect of high salinity and toxic levels of trace elements on halophytes, the performance of two marsh species, Atriplex halimus and Suaeda fruticosa, grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd2+ or 400 μM Cu2+ was evaluated. The effect of the combined stress conditions on hormone signaling was also assessed. Biomass production and chlorophyll content decreased under Cd2+ stress in both species, whereas Cu2+ had a lower impact on plant performance. The different plant sensibilities to the two trace elements assayed indicate that each metal has a different effect on plants. Furthermore, the deleterious effect of metal toxicity was alleviated when NaCl was added to the irrigation solution, demonstrating that NaCl improves plant performance and tolerance of halophytic species to cope with trace element intoxication. Results show that both species accumulated important quantities of Cd2+ and Cu2+ in roots (Cd2+: 2,690–3,130 μg g−1 DW and Cu2+: 2,070–2,770 μg g−1 DW); this finding allows us to classify these species among the hyperaccumulator plants. Cd2+ and Cu2+ differently affected endogenous phytohormone contents in both species. Data suggest an essential involvement of roots on the regulation of tolerance to trace elements. Therefore, indole-3-acetic acid levels increased in roots of both species irrigated with high levels of Cd2+, which suggests that the auxin may stimulate root promotion and growth under these stress conditions. Other compounds, classically considered as “stress hormones” showed very different patterns of accumulation. Whereas, salicylic acid (SA) levels in roots and leaves increased in response to Cd2+, root contents of jasmonic acid (JA), and abscisic acid (ABA) decreased. In leaves, the rambling pattern of accumulation observed for JA and ABA suggested the lack of a specific role in regulation against trace element toxicity. Together, data suggest that SA could act as a specific signal that detects trace element toxicity, whereas JA and ABA promote general responses against abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arbona V, Gomez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Plant Physiol 24:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bareen F, Tahira SA (2011) Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa. J Hazard Mater 186:443–450

    Article  CAS  Google Scholar 

  • Barthwal J, Nair S, Kakkar P (2008) Heavy metal accumulation in medicinal plants collected from environmentally different sites. Biomed Environ Sci 21:319–324

    Article  CAS  PubMed  Google Scholar 

  • Ben Hamed K, Ellouzi H, Talbi OZ, Hessini K, Slama I, Ghnaya T, Bosch SM, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Funct Plant Biol 40:883–896

    CAS  Google Scholar 

  • Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM (2004) Sensing and signalling during plant flooding. Plant Physiol Biochem 42:273–282

    Article  CAS  PubMed  Google Scholar 

  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gomez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442

    Article  CAS  PubMed  Google Scholar 

  • Elobeid M, Polle A (2012) Interference of heavy metal toxicity with auxin physiology. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Heidelberg, pp 249–259

    Chapter  Google Scholar 

  • Fassler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907

    Article  PubMed  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbal MH, Abdelly C (2007) Cd2+-induced growth reduction in the halophyte Sesuvium portulacastrum is significantly improved by NaCl. J Plant Res 120:309–312

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  PubMed  Google Scholar 

  • Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environ Exp Bot 92:4–18

    Article  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical Communication No. 22. Com. Bur. of Horti Cul. and Plant Crops East Malling. 2nd edn. Maidstore, Kent

  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    Article  CAS  PubMed  Google Scholar 

  • Iakimova ET, Woltering EJ, Kapchina-Toteva VM, Frans JM, Harren C, Simona MC (2008) Cadmium toxicity in cultured tomato cells—role of ethylene, proteases and oxidative stress in cell death signaling. Cell Biol Int 32:1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Liu D, Liu X (2001) Effects of copper on root growth, cell division and nucleolus of Zea mays. Biol Plant 44:105–109

    Article  CAS  Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Correal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81:507–552

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Jiang W, Gao X (2003) Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biol Plant 47:79–83

    Article  CAS  Google Scholar 

  • López-climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2011) Effects of cadmium on gas exchange and phytohormone contents in citrus. Biol Plant 55:187–190

    Article  Google Scholar 

  • Lutts S, Lefévre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in heavy metals phytoremediation. Ind Eng Chem Res 50:656–660

    Article  CAS  Google Scholar 

  • Martinez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    Article  CAS  PubMed  Google Scholar 

  • Martins LL, Mourato MP (2006) Effect of excess on tomato plants: growth parameters, enzymes activities, chlorophyll and mineral content. J Plant Nutri 29:2179–2198

    Article  CAS  Google Scholar 

  • Matthews DJ, Moran BM, Otte ML (2005) Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra merlin. Environ Pollut 134:343–351

    Article  CAS  PubMed  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake, Flora-morphology, distribution. Funct Ecol Plants 204:316–324

    Article  Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24:399–405

    CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol Plant 125:356–364

    Article  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  Google Scholar 

  • Rastgoo L, Alemzadeh A (2011) Biochemical responses of Gouan (Aeluropus littoralis) to heavy metals stress. Aust J Crop Sci 5:375–383

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plant. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–230

    Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, Del Rio LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian Mustard. Plant Physiol 109:1427–1433

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sleimi N, Bankaji I, Dallai M, Kefi O (2014) Accumulation des éléments traces et tolérance au stress métallique chez les halophytes colonisant les bordures de la lagune de Bizerte (Tunisie). Revue d’Ecologie (La Terre et la vie) 69:49–59

    Google Scholar 

  • Sousa AI, Cacador I, Lilleb AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857

    Article  CAS  PubMed  Google Scholar 

  • Stolt JP, Sneller FEC, Brynelsson T, Lundborg T, Schat H (2003) Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49:21–28

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Weggler-Beaton K, McLaughlin MJ, Graham RD (2000) Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids. Aust J Soil Res 38:37–45

    Article  CAS  Google Scholar 

  • Yakhin OI, Yakhin IA, Lubyanov AA, Vakhitov VA (2009) Effect of cadmium on the content of phytohormones and free amino acids, its cytogenetic effect, and accumulation in cultivated plants. Doklady Biol Sci 426:274–277

    Article  CAS  Google Scholar 

  • Zhang BL, Shang SH, Zhang HT, Jabeen Z, Zhang GP (2013a) Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco. Environ Toxicol Chem 32:1420–1425

    Article  PubMed  Google Scholar 

  • Zhang S, Lin H, Deng L, Gong G, Jia Y, Xu X, Li T, Li Y, Chen H (2013b) Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecol Eng 51:133–139

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Universitat Jaume I (SPAIN) through Grant P1IB2012-06, Hormone determinations were performed in the central facilities (Servei Central d’Instrumentació Científica, SCIC) of Universitat Jaume I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bankaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bankaji, I., Sleimi, N., López-Climent, M.F. et al. Effects of Combined Abiotic Stresses on Growth, Trace Element Accumulation, and Phytohormone Regulation in Two Halophytic Species. J Plant Growth Regul 33, 632–643 (2014). https://doi.org/10.1007/s00344-014-9413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-014-9413-5

Keywords

Navigation