Skip to main content
Log in

Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Being sessile, plants are subjected to a diverse array of environmental stresses during their life span. Exposure of plants to environmental stresses results in the generation of reactive oxygen species (ROS). These activated oxygen species tend to oxidize various cellular biomolecules like proteins, nucleic acids, and lipids, a process that challenges the core existence of the cell. To prevent the accumulation of these ROS and to sustain their own survival, plants have developed an intricate antioxidative defence system. The antioxidative defence system comprises various enzymatic and nonenzymatic molecules, produced to counter the adverse effect of environmental stresses. A sizable number of these molecules belong to the category of compounds called secondary metabolites. Secondary metabolites are organic compounds that are not directly involved in the growth and development of plants but perform specialized functions under a given set of conditions. Absence of secondary metabolites results in long-term impairment of the plant’s survivability. Such compounds generally include pigments, phenolics, and so on. Plant phenolic compounds such as flavonoids and lignin precursors have been reported to accumulate in response to various biotic and abiotic stresses and are regarded as crucial defence compounds that can scavenge harmful ROS. Another important category of plant metabolites, called brassinosteroids, exhibit stress regulatory and growth-promoting activity and are classified as phytohormones. Elucidation of the physiological and molecular effects of secondary metabolites and brassinosteroids have catapulted them as highly promising and environment-friendly natural substances, suitable for wider application in plant protection and crop yield promotion. The present review focuses on our current understanding of how plants respond to the generation of excessive ROS and the role of secondary metabolites and brassinosteroids in countering the adverse effects of environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali A (2000) Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci 152:173–179

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2003) Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth and improved photosynthetic pigment levels and nitrate reductase activity. Plant Growth Regul 40:29–32

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arora A, Byrem TM, Nari MG, Strasburg GM (2000) Modulation of liposomal membranes fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373:102–109

    Article  PubMed  CAS  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  PubMed  CAS  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiency. Methods Enzymol 186:343–355

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Xu Q, Cao Y, Qian K, An K, Zhu Y, Binzeng H, Zhao H, Kuai B (2005) Loss of function mutations in Det2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from gene to whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3b-like kinase. Plant Physiol 130:1506–1515

    Article  PubMed  CAS  Google Scholar 

  • Clouse S (2001) Brassinosteroids. Curr Biol 11(22):R904

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  PubMed  CAS  Google Scholar 

  • Decker EA (1997) Phenolics: prooxidants or antioxidants? Nutr Rev 55:396–407

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B (2003) Linking the xanthophyll cycle with thermal energy dissipation. Photosynth Res 76:73–80

    Article  PubMed  CAS  Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL, Thkopson JE (1986) Radical scavenging properties of polyamines. Phyochemistry 25:367–371

    Article  CAS  Google Scholar 

  • Edreva AM, Velikova V, Tsonev T (2007) Phenylamides in plants. Russ J Plant Physiol 54:287–301

    Article  CAS  Google Scholar 

  • Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34:67–78

    CAS  Google Scholar 

  • Friedrichsen DM, Joazeiro CAP, Li J, Hunter T, Chory J (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol 123:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Fyfe P, Cogdell RJ, Hunter CN, Jones MR (1995) Study of the carotenoid binding pocket of the photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides. In: Mathis P (ed.) Photosynthesis from light to biosphere, vol 4. Proceedings of 10th International Photosynthesis Congress, Montpellier, pp 47-50

  • Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25:1261–1269

    Article  CAS  Google Scholar 

  • Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21:273–322

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Schultz JC (1996) Multiple defences and signals in plant defence against pathogens and herbivores. In: Romeo JT et al (eds) Phytochemical diversity and redundancy in ecological interactions. Plenum Press, New York, pp 121–154

    Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Article  Google Scholar 

  • Havaux M, Gruszecki WI (1993) Heat- and light-induced chlorophyll a fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: indications of a regulatory effect of zeaxanthin on thylakoid membrane fluidity. Photochem Photobiol 58:607–614

    Article  CAS  Google Scholar 

  • Houimli SIM, Denden M, Mouhandes BD (2010) Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. Eurasia J Biosci 4:96–104

    Article  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defence responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  Google Scholar 

  • Jung CH, Maeder V, Funk F, Frey B, Sticher H, Frosserd E (2003) Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil 252:301–312

    Article  CAS  Google Scholar 

  • Karlova R, Boeren S, Russinova E, Aker J, Vervoort J, de Vries S (2000) The Arabidopsis somatic embryogenesis receptor-like kinase1 protein complex includes brassinosteroid-insensitive1. Plant Cell 18:626–638

    Google Scholar 

  • Kartal G, Temel A, Arican E, Gozukirmizi N (2009) Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul 58:261–267

    Article  CAS  Google Scholar 

  • Kemmerling B, Nürnberger T (2008) Brassinosteroid-independent functions of the BRI1-associated kinase BAK1/SERK3. Plant Signal Behav 3:116–118

    Article  PubMed  Google Scholar 

  • Khan MM, Mohammad TA (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3:232–249

    Google Scholar 

  • Khan AL, Hussain J, Hamayun M, Gilani SA, Ahmad S, Rehman G, Kim YH, Kang SM, Lee IJ (2010) Secondary metabolites from Inula britannica L. and their biological activities. Molecules 15:1562–1577

    Article  PubMed  CAS  Google Scholar 

  • Koopmann E, Logemann E, Hahlbrock K (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol 119:49–55

    Article  PubMed  CAS  Google Scholar 

  • Korableva NP, Platonova TA, Dogonadze MZ, Evsunina AS (2002) Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biol Plant 45:39–43

    Article  CAS  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  PubMed  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Lavid N, Schwartz A, Yarden O, Telor E (2001) The involvement of polyphenols and peroxidase activities in heavy metal accumulation by epidermal glands of water lily (Nymphaeceaea). Planta 212:323–331

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Trush MA (1994) Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism. Cancer Res 51:1895S–1898S

    Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Forster A, Durr M, Csiky O, Seufert G (1998) On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ 21:101–107

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 4:523–530

    Google Scholar 

  • Milic BL, Djilas SM, Canadanovic-Brunet JM (1998) Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem 61:443–447

    Article  CAS  Google Scholar 

  • Morgan JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol Med 22:861–870

    Article  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  PubMed  CAS  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  PubMed  CAS  Google Scholar 

  • Obst JR (1998) Special (secondary) metabolites from wood. In: Bruce A, Palferyman JW (eds) Forest products biotechnology. Taylor & Francis, London, pp 151–165

    Google Scholar 

  • Pelletier MK, Burbulis IE, Winkel-Shirley B (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Mol Biol 40:45–54

    Article  PubMed  CAS  Google Scholar 

  • Price AH, Athertan NM, Hendry GAF (1989) Plants under drought-stress generate activated oxygen. Free Radical Res Commun 8:61–66

    Article  CAS  Google Scholar 

  • Prigent SVE, Voragen AGJ, Visser AJWG, Koningsveld GAV, Grruppen H (2007) Covalent interactions between proteins and oxidation products of caffeoylquinic acid (chlorogenic acid). J Sci Food Agric 87:2502–2510

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  PubMed  CAS  Google Scholar 

  • Sachray L, Weiss D, Reuveni M, Nissim-Levi A, Shamir MO (2002) Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiol Plant 114:559–565

    Article  Google Scholar 

  • Sairam RK (1994) Effect of homobrassinolide application on metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 14:173–181

    Article  CAS  Google Scholar 

  • Sakihama Y, Mano J, Sano S, Asada K, Yamasaki H (2000) Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Biochem Biophys Res Commun 279:949–954

    Article  PubMed  CAS  Google Scholar 

  • Scheer JM, Pearce G, Ryan CA (2003) Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene. Proc Natl Acad Sci U S A 100:10114–10117

    Article  PubMed  CAS  Google Scholar 

  • Selmar D (2008) Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Agric For Res 58:139–144

    Google Scholar 

  • Sgherri C, Stevanovic B, Navari-Izzo F (2004) Role of phenolic acid during dehydration and rehydration of Ramonda serbica. Physiol Plantarum 122:478–485

    Article  CAS  Google Scholar 

  • Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769

    Article  CAS  Google Scholar 

  • Shibata M, Amano M, Kawata J, Uda M (1988) Breeding process and characteristics of ‘Summer Queen’, a spray-type chrysanthemum. Bull Natl Inst Veg Ornam Plants Tea Ser 2:245–255

    Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    Article  PubMed  CAS  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119

    Article  CAS  Google Scholar 

  • Szekeres M, Németh K, Kálmán ZK, Mathur J, Kauschmann A, Altmann T, Rédei Gp, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Tafaeizadeh Z (1998) Drought induced responses in plant cells. Int Rev Cytol 182:193–247

    Article  Google Scholar 

  • Taiz L, Zeiger E (2006) Secondary metabolites and plants defence. Plant Physiol 4:316–344

    Google Scholar 

  • Takahama U (1998a) Hydrogen peroxide-dependent oxidation of flavonoids and hydroxycinnamic acids derivatives in epidermal guard cells of Tradescantia virginiana. Plant Cell Physiol 29:475–481

    Google Scholar 

  • Takahama U (1998b) Oxidation of flavonols by hydrogen peroxide in epidermal and guard cells of Vicia faba L. Plant Cell Physiol 29:433–438

    Google Scholar 

  • Takatsuto S (1994) Brassinosteroids: distribution in plants, bioassays and microanalysis by gas chromatography–mass spectrometry. J Chromatogr 658:3–15

    Article  CAS  Google Scholar 

  • Tomana T, Yamada H (1988) Relationship between temperature and fruit quality of apple cultivars grown at different locations. J Jpn Soc Hortic Sci 56:391–397

    Google Scholar 

  • Velikova V, Edreva A, Loreto F (2004) Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plantarum 122:219–225

    Article  CAS  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  PubMed  CAS  Google Scholar 

  • Wang TW, Cosgrove DJ, Arteca RN (1993) Barssinosteroid stimulation of hypocotyls elongation and wall relaxation in Pakchoi (Brassica chinensis cv Lei-Choi). Plant Physiol 101:965–968

    PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Yamasaki H, Heshiki R, Ikehara N (1995) Leaf-goldening induced by high light in Ficus microcarpa L. f., a tropical fig. J Plant Res 108:171–180

    Article  Google Scholar 

  • Yin Y, Wang ZY, Garcia SM, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  PubMed  CAS  Google Scholar 

  • Zhao YJ, Chen J (2003) Studies on physiological action and application of 24-epibrassinolide in agriculture. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crops productivity. Kluwer Academic Publishers, Amsterdam, pp 159–170

    Google Scholar 

  • Zhao J, Williams CC, Last RL (1998) Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress and an abiotic elicitor. Plant Cell 10:359–370

    PubMed  CAS  Google Scholar 

  • Zhou A, Wang H, Walker JC, Li J (2004) BRI1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signalling. Plant J 40:399–409

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartwal, A., Mall, R., Lohani, P. et al. Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses. J Plant Growth Regul 32, 216–232 (2013). https://doi.org/10.1007/s00344-012-9272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9272-x

Keywords

Navigation