Skip to main content
Log in

Cytokinin and Ethylene Affect Auxin Transport-Dependent Rhizogenesis in Hypocotyls of Common Ice Plant (Mesembryanthemum crystallinum L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots when cultured vertically with either the apical end (AE) or basal end (BE) in media containing indole-3-acetic acid (IAA). IAA alone induced roots regularly from the basal end of the explants, either from the cut surface immersed in the medium or from the opposite side. The inhibitors of auxin efflux carriers, α-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), inhibited rhizogenesis only from AE-cultured explants, indicating the role of polar auxin transport in root regeneration in this system. Cytokinin (zeatin, kinetin, BAP) added to auxin-containing medium reduced rhizogenesis from the explants maintained with BE and AE and additionally changed the IAA-induced pattern of rooting in AE-cultured explants by favoring rooting from the apical end and middle part of the hypocotyl with its concomitant reduction from the basal end. The addition of kinetin did not influence the content of IAA in the explants maintained with AE, suggesting that the cytokinin effect on root patterning was not dependent on auxin biosynthesis. Kinetin, however, strongly enhanced ethylene production. The importance of ethylene in regulating PAT-dependent rhizogenesis was tested by using an ethylene antagonist AgNO3, an inhibitor of ethylene synthesis aminoethoxyvinylglycine (AVG), and a precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC). AgNO3 applied together with IAA or with IAA and kinetin strongly reduced the production of ethylene, inhibited rhizogenesis, and induced nonregenerative callus from BE, suggesting the need for ethylene signaling to elicit the rhizogenic action of auxin. A reduction of rhizogenesis and decrease of ethylene biosynthesis was also caused by AVG. In addition, AVG at 10 μM reversed the effect of cytokinin on root patterning, resulting in roots emerging only from BE on the medium with IAA and kinetin. Conversely, ACC at 200 μM markedly enhanced the production of ethylene and partly mimicked the effect of cytokinin when applied with IAA alone, thus confirming that in cultured hypocotyls of ice plant, cytokinin affects IAA-induced rhizogenesis through an ethylene-dependent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1caroxylate synthase in Arabidopsis thaliana. J Biol Chem 270:19093–19099

    Article  CAS  PubMed  Google Scholar 

  • Aloni R (2004) The induction of vascular tissue by auxin. In: Davis PJ (ed) Plant hormones: biosynthesis, signal transduction, action. Kluwer, Dordrecht, pp 471–492

    Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Bertell G, Eliasson L (1992) Cytokinin effects on root growth and possible interactions with ethylene and indole-3-acetic acid. Physiol Plant 84:255–261

    Article  CAS  Google Scholar 

  • Bourquin M, Pilet PE (1990) Effect of zeatin on the growth and indolyl-3-acetic acid and abscisic levels in maize roots. Physiol Plant 80:342–349

    Article  CAS  Google Scholar 

  • Cary AJ, Liu W, Howell SH (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyls elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Casson SA, Lindsey K (2003) Genes and signaling in root development. New Phytol 158:11–38

    CAS  Google Scholar 

  • Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2 and eto3 mutations and cytokinin treatment elevate ethylene biosynthesis in Arabidopsis by increasing the stability of the ACS5 protein. Plant Cell 15:545–559

    Article  CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Sauer M, Mapsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benkova E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794

    Article  CAS  PubMed  Google Scholar 

  • Eklöf S, Åstot C, Blackwell J, Mortiz T, Olsson O, Sandberg G (1997) Auxin–cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol 38:225–235

    Google Scholar 

  • Jiang K, Feldman LJ (2005) Regulation of root apical meristem development. Ann Rev Cell Dev Biol 21:485–509

    Article  CAS  Google Scholar 

  • John PCL, Zhang K, Dong C, Diederich L, Wightman F (1993) p34cdc2 related proteins in control of cell cycle progression, the switch between division and differentiation in tissue development and stimulation of division by auxin and cytokinin. Aust J Plant Physiol 20:503–526

    Article  CAS  Google Scholar 

  • Katekar GF, Geissler AE (1980) Auxin transport inhibitors. IV. Evidence of common mode of action for a proposed class of auxin transport inhibitors: phytotropins. Plant Physiol 66:1190–1195

    CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Kępczyński J, Nemoykina A, Kępczyńska E (2006) Ethylene and in vitro rooting of rose shoots. Plant Growth Regul 50:23–28

    Article  Google Scholar 

  • Kuderová A, Urbánková I, Válková M, Malbeck J, Brzobohatý B, Ménethova D, Hejátko J (2008) Effect of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol 49:570–582

    Article  PubMed  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  CAS  PubMed  Google Scholar 

  • Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Libik M, Konieczny R, Pater B, Ślesak I, Miszalski Z (2005) Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Rep 23:834–841

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Reid DM (1992) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus L.) seedlings. IV. The role of changes in endogenous and free and conjugated indole-3-acetic acid. Physiol Plant 86:285–292

    Article  CAS  Google Scholar 

  • Lloret PG, Casero PJ (2002) Lateral root initiation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots—the hidden half. Marcel Dekker, New York, pp 127–155

    Google Scholar 

  • López Nicólas JL, Acosta M, Sánchez-Bravo J (2004) Role of basipetal auxin transport and lateral auxin movement in rooting and growth of etiolated lupin hypocotyls. Physiol Plant 121:294–304

    Article  PubMed  Google Scholar 

  • Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609–614

    Article  CAS  PubMed  Google Scholar 

  • Morgan P, Gausman H (1966) Effects of ethylene on auxin transport. Physiol Plant 41:45–52

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    Article  CAS  PubMed  Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044

    Article  PubMed  Google Scholar 

  • Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, Dhonukshe P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazímalová E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  Google Scholar 

  • Ponce G, Barlow PW, Feldmann LJ, Cassab GJ (2005) Auxin and ethylene interactions control mitotic activity of the quiescent centre, root cap size, and pattern of cap cell differentiation in maize. Plant Cell Environ 28:719–732

    Article  CAS  PubMed  Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    Article  CAS  PubMed  Google Scholar 

  • Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol 133:761–772

    Article  CAS  PubMed  Google Scholar 

  • Rashotte AM, Chae HS, Maxwell BB, Kieber JJ (2005) The interaction of cytokinin with other signals. Physiol Plant 123:184–194

    Article  CAS  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp Soc Exp Biol 11:118–131

    Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  PubMed  Google Scholar 

  • Suttle JC (1988) Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol 88:795–799

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Vieten A, Sauer S, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

    Article  CAS  PubMed  Google Scholar 

  • Woeste K, Vogel J, Kieber J (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–484

    Article  CAS  Google Scholar 

  • Yamamoto F, Sakata T, Terazawa K (1995) Physiological, morphological and anatomical responses of Fraximus mandshurica seedlings to flooding. Tree Physiol 15:713–719

    PubMed  Google Scholar 

  • Zhang NG, Hasenstein KH (1999) Initiation and elongation of lateral roots in Lactuca sativa. J Plant Sci 160:511–519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Dr. Lech Michalczuk for the IAA assay. Financial support by the German Academic Exchange Service (DAAD) through a scholarship to RK is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Konieczny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konieczny, R., Kępczyński, J., Pilarska, M. et al. Cytokinin and Ethylene Affect Auxin Transport-Dependent Rhizogenesis in Hypocotyls of Common Ice Plant (Mesembryanthemum crystallinum L.). J Plant Growth Regul 28, 331–340 (2009). https://doi.org/10.1007/s00344-009-9097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9097-4

Keywords

Navigation