Skip to main content
Log in

Biochemical Characterization of Cytokinin Oxidases/Dehydrogenases from Arabidopsis thaliana Expressed in Nicotiana tabacum L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Transgenic tobacco plants overexpressing single Arabidopsis thaliana cytokinin dehydrogenase (CKX, EC 1.5.99.12) genes AtCKX1, AtCKX2, AtCKX3, AtCKX4, AtCKX5, AtCKX6, and AtCKX7 under the control of a constitutive 35S promoter were tested for CKX-enzymatic activity with varying pH, electron acceptors, and substrates. This comparative analysis showed that out of these, only AtCKX2 and AtCKX4 were highly active enzymes in reaction with isoprenoid cytokinins (N 6-(2-isopentenyl)adenine (iP), zeatin (Z)) and their ribosides using the artificial electron acceptors 2,6-dichlorophenol indophenol (DCPIP) or 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q0). Turnover rates of these cytokinins by four other AtCKX isoforms (AtCKX1, AtCKX3, AtCKX5, and AtCKX7) were substantially lower, whereas activity of AtCKX6 was almost undetectable. The isoenzymes AtCKX1 and AtCKX7 showed significant preference for cytokinin glycosides, especially N 6-(2-isopentenyl)adenine 9-glucoside, under weakly acidic conditions. All enzymes preferentially cleave isoprenoid cytokinins in the presence of an electron acceptor, but aromatic cytokinins are not resistant and are degraded with lower reaction rates as well. Cytokinin nucleotides, considered as resistant to CKX attack until now, were found to be potent substrates for some of the CKX isoforms. Substrate specificity of AtCKXs is discussed in this study with respect to the structure of the CKX active site. Further biochemical characterization of the AtCKX1, AtCKX2, AtCKX4 and AtCKX7 enzymes showed pH-dependent activity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bilyeu KD, Cole JL, Laskey JG, Riekhof WR, Esparza TJ, Kramer MD, Morris RO (2001) Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol 125:378–386

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brzobohatý B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262:1051–1054

    Article  PubMed  Google Scholar 

  • Burch LR, Stuchbury T (1986) Purification and properties of adenosine nucleosidases from tomato (Lycopersicon esculentum) roots and leaves. J Plant Physiol 125:267–273

    CAS  Google Scholar 

  • Chen CM, Kristopeit SM (1981) Deribosylation of cytokinin ribonucleosides by adenosine nucleosidase from wheat germ cells. Plant Physiol 68:1020–1023

    Article  PubMed  CAS  Google Scholar 

  • Frébort I, Šebela M, Galuszka P, Werner T, Schmülling T, Peč P (2002) Cytokinin oxidase/cytokinin dehydrogenase assay: Optimized procedures and applications. Anal Biochem 306:1–7

    Article  PubMed  CAS  Google Scholar 

  • Frébortová J, Fraaije MW, Galuszka P, Šebela M, Peč P, Hrbáč J, Novák O, Bilyeu KD, English JT, Frébort I (2004) Catalytic reaction of cytokinin dehydrogenase: Preference for quinones as electron acceptors. Biochem J 380:121–130

    Article  PubMed  Google Scholar 

  • Frébortová J, Galuszka P, Popelková H, Lenobel R, Šebela M, Werner T, Schmülling T, Frébort I (2007) Functional expression and purification of cytokinin dehydrogenase from Arabidopsis thaliana (AtCKX2) in Saccharomyces cerevisiae. Biol Plant (in press)

  • Fusseder A, Ziegler P (1988) Metabolism and compartmentation of dihydrozeatin exogenously supplied to photoautotrophic suspension cultures of Chenopodium rubrum. Planta 173:104–109

    Article  CAS  Google Scholar 

  • Galuszka P, Frébort I, Šebela M, Sauer P, Jacobsen S, Peč P (2001) Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur J Biochem 268:450–461

    Article  PubMed  CAS  Google Scholar 

  • Galuszka P, Frébortová J, Werner T, Yamada M, Strnad M, Schmülling T, Frébort I (2004) Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression. Eur J Biochem 271: 3990–4002

    Article  PubMed  CAS  Google Scholar 

  • Galuszka P, Frébortová J, Luhová L, Bilyeu KD, English JT, Frébort I (2005) Tissue localization of cytokinin dehydrogenase in maize: Possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant Cell Physiol 46:716–728

    Article  PubMed  CAS  Google Scholar 

  • Gatz C, Frohberg C, Wendenburg R (1992) Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenig tobacco plants. Plant J 2:397–404

    PubMed  CAS  Google Scholar 

  • Guranowski A, Schneider Z (1977) Purification and characterization of adenosine nucleosidase from barley leaves. Biochim Biophys Acta 482:145–158

    PubMed  CAS  Google Scholar 

  • Haidoune M, Pethe C, Laloue M, Mornet R (1994) Transformations of the natural cytokinins zeatin in aqueous acidic media. J Chem Soc Perkin Trans 1:3009–3012

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hirose N, Makita N, Yamaya T, Sakakibara H (2005) Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol 138:196–206

    Article  PubMed  CAS  Google Scholar 

  • Houba-Hérin N, Pethe C, d’Alayer J, Laloue M (1999) Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17:615–626

    Article  PubMed  Google Scholar 

  • Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol 42:677–685

    Article  PubMed  CAS  Google Scholar 

  • Kopečný D, Pethe C, Šebela M, Houba-Hérin N, Madzak C, Majira A, Laloue M (2005) High-level expression and characterization of Zea mays cytokinin oxidase/dehydrogenase in Yarrowia lipolytica. Biochimie 87:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Laloue M, Fox JE (1989) Cytokinin oxidase from wheat: Partial purification and general properties. Plant Physiol 90:899–906

    PubMed  CAS  Google Scholar 

  • Laskey GL, Patterson P, Bilyeu KD, Morris RO (2003) Rate enhancement of cytokinin oxidase/dehydrogenase using 2,6-dichloroindophenol as an electron acceptor. Plant Growth Regul 40:189–196

    Article  CAS  Google Scholar 

  • Letham DS, Palni LMS, Tao G-Q, Gollnow BI, Bates CM (1983) Regulators of cell division in plant tissues XXIX. The activities of cytokinin glucosides and alanine conjugates in cytokinin bioassays. J Plant Growth Regul 2:103–115

    Article  CAS  Google Scholar 

  • Malito E, Coda A, Bilyeu KD, Fraaije MW, Mattevi A (2004) Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: implications for flavoenzyme catalysis. J Mol Biol 341:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Massonneau A, Houba-Hérin N, Pethe C, Madzak C, Falque M, Mercy M, Kopečný D, Majira A, Rogowsky P, Laloue M (2004) Maize cytokinin oxidase genes: Differential expression and cloning of two new cDNAs. J Exp Bot 55:2549–2557

    Article  PubMed  CAS  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Morris RO, Bilyeu KD, Laskey JG, Cheikh NN (1999) Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255:328–333

    Article  PubMed  CAS  Google Scholar 

  • Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schmülling T (2003) Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant 117:11–21

    Article  CAS  Google Scholar 

  • Popelková H, Galuszka P, Frébortová J, Bilyeu KD, Frébort I (2004) Cytokinin dehydrogenase: Characterization and structure homology modelling of the flavoprotein catabolizing plant hormones cytokinins. In: Pandalai SG (ed), Recent Research Developments in Proteins, vol. 2. Kerala, India: Transworld Research Network, pp 63–81

    Google Scholar 

  • Popelková H, Fraaije MW, Novák O. Frébortová J, Bilyeu KD, Frébort I (2006) Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction: correlations with the crystal structure. Biochem J 398:113–124

    Article  PubMed  Google Scholar 

  • Sakano Y, Okada Y, Matsunaga A, Suwama T, Kaneko T, Ito K, Noguchi H, Abe I (2004) Molecular cloning, expression, and characterization of adenylate isopentenyltransferase from hop (Humulus lupulus L.). Phytochemistry 65:2439–2446

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: Activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–439

    Article  PubMed  CAS  Google Scholar 

  • Spíchal L, Rakova NY, Riefler M., Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305

    Article  PubMed  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    Article  PubMed  CAS  Google Scholar 

  • Wesenberg GE, Phillips GN, Han BW, Bitto E, Bingman CA, Bae E (2005) X-ray structure of cytokinin oxidase/dehydrogenase (CKX) from Arabidopsis thaliana AT5G21482. PDB entry 2EXR. Available at http://www.rcsb.org/pdb/Welcome.do

  • Yang SH, Yu H, Goh CJ (2002) Isolation and characterization of the orchid cytokinin oxidase DSCKX1 promoter. J Exp Bot 53:1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Yu H, Goh CJ (2003) Functional characterisation of a cytokinin oxidase gene DSCKX1 in Dendrobium orchid. Plant Mol Biol 51:237–248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants 522/06/0703 from the Grant Agency, Czech Republic (PG), MSM 6198959216 from the Ministry of Education, Youth and Physical Education, Czech Republic (IF), and DFG grant Schm 814/17-2, Germany (TS). The authors thank Lenka Luhová for technical assistance with the histochemical localization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Galuszka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galuszka, P., Popelková, H., Werner, T. et al. Biochemical Characterization of Cytokinin Oxidases/Dehydrogenases from Arabidopsis thaliana Expressed in Nicotiana tabacum L.. J Plant Growth Regul 26, 255–267 (2007). https://doi.org/10.1007/s00344-007-9008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-007-9008-5

Keywords

Navigation