Skip to main content
Log in

Characterization of CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARFISM Homologs in Rice (Oryza sativa L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To enhance our understanding of brassinosteroid (BR) biosynthesis in rice, we attempted to identify putative rice homologs of Arabidopsis CYP90A1/ CPD and related mutants. Two candidate genes, designated CYP90A3/OsCPD1 and CYP90A4/OsCPD2, are located on chromosomes 11 (2.0 cM) and 12 (1.9 cM), respectively. Based on sequence similarity with the Arabidopsis CYP90A1/CPD gene, we predict that the CYP90A3/OsCPD1 and CYP90A4/OsCPD2 gene products function as C-23α hydroxylases in the BR biosynthesis pathway. Both are broadly expressed in wild-type rice, and their expression is regulated by a feedback mechanism. A retrotransposon insertion mutant of CYP90A3/OsCPD1, oscpd1-1, did not produce any BR-deficient phenotype or feedback upregulation of genes for BR biosynthesis enzymes. These results indicate that if, as predicted, the CYP90A3/OsCPD1 and CYP90A4/OsCPD2 genes do function in the BR biosynthesis pathway, they may each have enough capacity to catalyze BR biosynthesis on their own. As a consequence, the oscpd1-1 mutant may not be deficient in endogenous BRs. Interestingly, BR biosynthesis enzymes except C-6 oxidase are encoded by plural genes in rice but by single genes in Arabidopsis (again, except C-6 oxidase). On the basis of these findings, we discuss the differences in BR biosynthesis between rice and Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Aubourg S, Lecharny A, Bohlmann J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267:730–745

    Article  PubMed  CAS  Google Scholar 

  • Azpiroz R, Wu Y, LoCascio JC, Feldmann KA. 1998. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10:219–230

    Article  PubMed  CAS  Google Scholar 

  • Bishop GJ, Yokota T. 2001. Plant steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol 42:114–120

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, et al. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC. 1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM. 1998. Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Yokota T. 2003. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, et al. 2006. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. Plant J 45:765–774

    Article  PubMed  CAS  Google Scholar 

  • Guyot R, Keller B. 2004. Ancestral genome duplication in rice. Genome 47:610–614

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H. 2001. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, et al. 2002. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J 32:495–508

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, et al. 2003. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, et al. 2005. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17:2243–2254

    Article  PubMed  CAS  Google Scholar 

  • Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, et al. 2005. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J 41:710–721.

    Article  CAS  Google Scholar 

  • Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, et al. 2005. Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17:2397–2412

    Article  CAS  Google Scholar 

  • Kumar A, Hirochika H. 2001. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chory J. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Molnar G, Fujioka S, Takatsuto S, Sakurai A, et al. 1998. Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J 14:593–602

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, et al. 2005. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem 280:17873–17879

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, et al. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, et al. 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnol 24:105–109

    Article  CAS  Google Scholar 

  • Sasse JM. 2003. Physiological action of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, et al. 2001. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, et al. 2003. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287–297

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, et al. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Kurata N, Tanoue H, Shimokawa T, Umehara Y, et al. 1998. Physical mapping of duplicated genomic regions of two chromosome ends in rice. Genetics 150:1595–1603

    PubMed  CAS  Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, et al. 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Akio Miyao and Hirohiko Hirochika (National Institute of Agrobiological Sciences) for providing mutant seed materials. T.S. was supported by the Rice Genome Project of the Ministry of Agriculture, Forestry and Fisheries of Japan (IP-1010) and a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). M.M. was supported by a Grant-in-Aid for Centers of Excellence from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Matsuoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, T., Matsuoka, M. Characterization of CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARFISM Homologs in Rice (Oryza sativa L.). J Plant Growth Regul 25, 245–251 (2006). https://doi.org/10.1007/s00344-006-0041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-006-0041-6

Keywords

Navigation