Skip to main content
Log in

Regulation and Manipulation of the Biosynthesis of Abscisic Acid, Including the Supply of Xanthophyll Precursors

  • Thematic Article
  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Mutant plants deficient in the phytohormone abscisic acid (ABA) are typically unable to control their stomatal behavior appropriately in response to water stress, leading to a “wilty” phenotype. In plant species showing strong seed dormancy, ABA deficiency of the seed results in a second clearly recognizable phenotype, that is, early germination. Mutants selected by means of this latter character are often collectively termed “viviparous.” These two broad classes include mutants that are defective in their ability to synthesize ABA. A number of these genetic lesions have been assigned to specific steps in ABA biosynthesis and have been invaluable in elucidating many important features of the pathway. Most of the genes encoding ABA biosynthetic enzymes have now been cloned and their expression has been studied and manipulated. Genetically modified plants constitutively overexpressing ABA biosynthesis genes have been produced and analyzed over the last 6 years. In some cases these plants have been found to have elevated ABA concentrations, leading to altered stomatal behavior and increased seed dormancy. Genetic manipulation of ABA synthesis in photosynthetic tissues has been most effectively achieved through overexpression of the key rate-limiting biosynthetic enzyme 9-cis-epoxycarotenoid dioxygenase, and downregulation of the major catabolic enzyme ABA 8′-hydroxylase. However in non-photosynthetic tissue manipulation of ABA synthesis is a more complex task because of the limiting supply of xanthophyll precursors. The recent cloning of genes encoding enzymes controlling important pathways of ABA catabolism has been reviewed elsewhere, and so only information relevant to the regulation and manipulation of ABA synthesis, including supply of xanthophyll precursors, is discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adato I, Gazit S, Blumenfeld A. 1976. Relationship between changes in abscisic acid and ethylene production during ripening of avocado fruits. Aust J Plant Physiol 3:555–558

    CAS  Google Scholar 

  • Al-Babili S, Hugueney P, Schledz M, Welsch R, Frohnmeyer H, others. 2000. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett 485:168–172

    Article  PubMed  CAS  Google Scholar 

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, others. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    Article  PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, others. 1997. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    Article  PubMed  CAS  Google Scholar 

  • Audran C, Borel C, Frey A, Sotta B, Meyer C, others. 1998. Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol 118:1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA. 1993. cDNA cloning, expression during development, and genome mapping of psy2, a 2nd tomato gene encoding phytoene synthase. J Biol Chem 268:25718–25721

    PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA, Beyer P. 1999. Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and ζ-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur J Biochem 259:396–403

    Article  PubMed  CAS  Google Scholar 

  • Bittner F, Oreb M, Mendel RR. 2001. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384

    Article  PubMed  CAS  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, others. 2004. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Botella-Pavia P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A, others. 2004. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J 40:188–199

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Keller Y, D’Harlingue A, Camara B. 1998. Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). Biochim Biophys Acta—Lipids Lipid Metab 1391:320–328

    CAS  Google Scholar 

  • Bouvier F, D’Harlingue A, Backhaus RA, Kumagai MH, Camara B. 2000. Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem 267:6346–6352

    Article  PubMed  CAS  Google Scholar 

  • Bugg TDH. 2003. Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101

    Article  CAS  Google Scholar 

  • Burbidge A, Grieve T, Jackson A, Thompson A, Taylor I. 1997. Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. J Exp Bot 48:2111–2112

    CAS  Google Scholar 

  • Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, others. 1999. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J 17:427–431

    Article  PubMed  CAS  Google Scholar 

  • Carol P, Kuntz M. 2001. A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6:31–36

    Article  PubMed  CAS  Google Scholar 

  • Carretero-Paulet L, Ahumada I, Cunillera N, Rodriguez-Concepcion M, Ferrer A, others. 2002. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4- phosphate pathway. Plant Physiol 129:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, others. 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    PubMed  CAS  Google Scholar 

  • Chernys JT, Zeevaart JAD. 2000. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124:343–353

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Zeevaart JAD. 1985. Abscisic acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes. Plant Physiol 77:25–28

    CAS  PubMed  Google Scholar 

  • Cunningham FX, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P. 2002. Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  PubMed  CAS  Google Scholar 

  • Delong A, Calderon-Urrea A, Dellaporta SL. 1993. Sex determination gene Tasselseed2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757–768

    Article  PubMed  CAS  Google Scholar 

  • Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, others. 2002. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34

    Article  PubMed  CAS  Google Scholar 

  • Duckham SC, Linforth RST, Taylor IB. 1991. Abscisic acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ 14:601–606

    CAS  Google Scholar 

  • Ducreux LJM, Morris WL, Hedley PE, Shepherd T, Davies HV, others. 2005. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 56:81–89

    PubMed  CAS  Google Scholar 

  • Estevez JM, Cantero A, Reindl A, Reichler S, Leon P. 2001. 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM. 1999. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol 40:687–698

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Schuch W, Bramley PM. 2000. Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts—partial purification and biochemical properties. Planta 211:361–369

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, others. 2002. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092–1097

    Article  PubMed  CAS  Google Scholar 

  • Fray RG, Grierson D. 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  PubMed  CAS  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, others. 1995. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  • Frey A, Audran C, Marin E, Sotta B, Marion-Poll A. 1999. Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Mol Biol 39:1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Al-Babili S, von Lintig J. 2003. Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–149

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, others. 2002. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Guzman M, Abia D, Salinas J, Serrano R, Rodriguez PL. 2004. Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiol 135:325–333

    Article  PubMed  CAS  Google Scholar 

  • Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M. 2000. Control of seed dormancy in Nicotiana plumbaginifolia: post- imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210:279–285

    PubMed  CAS  Google Scholar 

  • Grossmann K, Hansen H. 2001. Ethylene-triggered abscisic acid: a principle in plant growth regulation? Physiol Plant 113:9–14

    Article  CAS  Google Scholar 

  • Han SY, Kitahata N, Saito T, Kobayashi M, Shinozaki K, others. 2004a. A new lead compound for abscisic acid biosynthesis inhibitors targeting 9-cis-epoxycarotenoid dioxygenase. Bioorg Med Chem Lett 14:3033–3036

    CAS  Google Scholar 

  • Han SY, Kitahata N, Sekimata K, Saito T, Kobayashi M, others. 2004b. A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135:1574–1582

    Article  CAS  Google Scholar 

  • Hirai N, Yoshida R, Todoroki Y, Ohigashi H. 2000. Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci Biotechnol Biochem 64:1448–1458

    PubMed  CAS  Google Scholar 

  • Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Hoeffler JF, Hemmerlin A, Grosdemange-Billiard C, Bach TJ, Rohmer M. 2002. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J 366:573–583

    Article  PubMed  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J. 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. 2000. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123:553

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, others. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  PubMed  CAS  Google Scholar 

  • Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE. 2005. The structure of a retinal-forming carotenoid oxygenase. Science 308:267–269

    Article  PubMed  CAS  Google Scholar 

  • Knight CD, Sehgal A, Atwal K, Wallace JC, Cove DJ, others. 1995. Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7:499–506

    PubMed  CAS  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, others. 2004. Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Kramer PJ, Boyer JS. 1995. Water Relations of Plants and Soils, San Diego, CA, USA, Academic Press

    Google Scholar 

  • Kuntz M, Romer S, Suire C, Hugueney P, Weil JH, others. 1992. Identification of a cDNA for the plastid located geranylgeranyl pyrophosphate synthase from Capsicum annuum—correlative increase in enzyme activity and transcript level during fruit ripening. Plant J 2:25–34

    PubMed  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, others. 2004. The Arabidopsis cytochrome P450CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    Article  PubMed  CAS  Google Scholar 

  • Laby RJ, Kincaid MS, Kim DG, Gibson SI. 2000. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596

    Article  PubMed  CAS  Google Scholar 

  • Leon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, others. 1996. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M. 1997. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    Article  PubMed  CAS  Google Scholar 

  • Lindgren LO, Stalberg KG, Hoglund AS. 2003. Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132:779–785

    Article  PubMed  CAS  Google Scholar 

  • Linforth RST, Taylor IB, Hedden P. 1987a. Abscisic acid and C10 dicarboxylic acids in wilty tomato mutants. J Exp Bot 38:1734–1740

    CAS  Google Scholar 

  • Linforth RST, Bowman WR, Griffin DA, Marples BA, Taylor IB. 1987b. 2-trans-ABA alcohol accumulation in the wilty tomato mutants flacca and sitiens. Plant Cell Environ 10:599–606

    CAS  Google Scholar 

  • Liotenberg S, North H, Marion-Poll A. 1999. Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiol Biochem 37:341–350

    Article  CAS  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A. 2000. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J 22:503–513

    Article  PubMed  CAS  Google Scholar 

  • Marin E, Marion-Poll A. 1997. Tomato flacca mutant is impaired in ABA aldehyde oxidase and xanthine dehydrogenase activities. Plant Physiol Biochem 35:369–372

    CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, others. 1996. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    PubMed  CAS  Google Scholar 

  • Martin T, Wohner R-V, Hummel S, Willmitzer L, Frommer WB. 1992. “The GUS reporter system as a tool to study plant gene expression” In Gallagher SR (ed.), GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. San Diego, CA, USA, Academic Press, Inc., pp. 23–43

    Google Scholar 

  • Mcglasson WB, Idato I. 1976. Changes in the concentrations of abscisic acid in fruits of normal and Nr, rin and nor mutant tomatoes during growth, maturation and senescence. Aust J Plant Physiol 3:809–817

    Article  CAS  Google Scholar 

  • Mendel RR, Schwarz G. 1999. Molybdoenzymes and molybdenum cofactor in plants. Crit Rev Plant Sci 18:33–69

    CAS  Google Scholar 

  • Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, others. 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Article  PubMed  CAS  Google Scholar 

  • Milborrow B. 1974. The chemistry and physiology of abscisic acid. Annu Rev Plant Physiol 25:259–307

    Article  CAS  Google Scholar 

  • Min XJ, Okada K, Brockmann B, Koshiba T, Kamiya Y. 2000. Molecular cloning and expression patterns of three putative functional aldehyde oxidase genes and isolation of two aldehyde oxidase pseudogenes in tomato. Biochim Biophys Acta—Gene Struct Expression 1493:337–341

    CAS  Google Scholar 

  • Morris WL, Ducreux L, Griffiths DW, Stewart D, Davies HV, others. 2004. Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A. 2003. ABA action and interactions in seeds. Trends Plant Sci 8:213–217

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Kawaide H, Kamiya Y, Naito S. 1998. Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-dependent and ABA-independent accumulation of free amino acids during dehydration. Plant Cell Physiol 39:853–858

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR. 1997. The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167

    Article  PubMed  CAS  Google Scholar 

  • Norris SR, Barrette TR, Della-Penna D. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:2139–2149

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y. 2000. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Min X, Seo M, Nakabayashi K, Kamiya Y, et al. 2002. Complementation of a tomato ABA-deficient sitiens mutant by an Arabidopsis aldehyde oxidase gene, AAO3. Plant Cell Physiol 43:S42

    Article  Google Scholar 

  • Page JE, Hause G, Raschke M, Gao WY, Schmidt J, others. 2004. Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiol 134:1401–1413

    Article  PubMed  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, others. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  PubMed  CAS  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    Article  PubMed  CAS  Google Scholar 

  • Parry AD, Horgan R. 1991. Carotenoid metabolism and the biosynthesis of abscisic acid. Phytochemistry 30:815–821

    Article  CAS  Google Scholar 

  • Parry AD, Horgan R. 1992. Abscisic acid biosynthesis in roots I. The identification of potential abscisic acid precursors, and other carotenoids. Planta 187:185–191

    CAS  Google Scholar 

  • Parry AD, Babiano MJ, Horgan R. 1990. The role of cis-carotenoids in abscisic acid biosynthesis. Planta 182:118–128

    Article  CAS  Google Scholar 

  • Pierce M, Raschke K. 1980. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta 148:174–182

    Article  CAS  Google Scholar 

  • Pogson BJ, Rissler HM. 2000. Genetic manipulation of carotenoid biosynthesis and photoprotection. Philos Trans R Soc Lond Ser B Biol Sci 355:1395–1403

    Article  CAS  Google Scholar 

  • Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D. 1996. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–1639

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Zeevaart JAD. 1999. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361

    PubMed  CAS  Google Scholar 

  • Qin X, Zeevaart JAD. 2002. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551

    PubMed  CAS  Google Scholar 

  • Rissler HM, Pogson BJ. 2001. Antisense inhibition of the β-carotene hydroxylase enzyme in Arabidopsis and the implications for carotenoid accumulation, photoprotection and antenna assembly. Photosynth Res 67:127–137

    Article  PubMed  CAS  Google Scholar 

  • Rock CD, Zeevaart JAD. 1991. The ABA mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499

    PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Ahumada I, Diez-Juez E, Sauret-Gueto S, Lois LM, others. 2001. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J 27:213–222

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A. 2002. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Romer S, Lubeck J, Kauder F, Steiger S, Adomat C, others. 2002. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  PubMed  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. 2000. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, others. 2001. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433

    Article  PubMed  CAS  Google Scholar 

  • Rossel JB, Wilson IW, Pogson BJ. 2002. Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Ruch S, Beyer P, Ernst H, Al-Babili S. 2005. Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol Microbiol 55:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero B, Koiwa H, Manabe Y, Quist TM, Inan G, others. 2004. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol 136:3134–3147

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Scazzocchio C, Fluhr R. 2002. The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J 31:305–317

    Article  PubMed  CAS  Google Scholar 

  • Sauter A, Hartung W. 2002. The contribution of internode and mesocotyl tissues to root-to-shoot signalling of abscisic acid. J Exp Bot 53:297–302

    PubMed  CAS  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, others. 2001. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Leon-Kloosterziel KM, Koornneef M, Zeevaart JAD. 1997a. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166

    Article  CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR. 1997b. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    Article  CAS  Google Scholar 

  • Schwartz SH, Qin X, Zeevaart JAD. 2001. Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Qin XQ, Zeevaart JAD. 2003. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Qin XQ, Loewen MC. 2004. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279:46940–46945

    Article  PubMed  CAS  Google Scholar 

  • Sekimoto H, Seo M, Kawakami N, Komano T, Desloire S, others. 1998. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol 39:433–442

    PubMed  CAS  Google Scholar 

  • Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, others. 2000. The Arabidopsis aldehyde oxidase 3 (AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913

    PubMed  CAS  Google Scholar 

  • Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, others. 2004. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45:1694–1703

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY. 1999. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  PubMed  CAS  Google Scholar 

  • Sindhu RK, Walton DC. 1987. Conversion of xanthoxin to abscisic acid by cell-free preparations from bean leaves. Plant Physiol 85:916–921

    CAS  PubMed  Google Scholar 

  • Sindhu RK, Walton DC. 1988. Xanthoxin metabolism in cell-free preparations from wild-type and wilty mutants of tomato. Plant Physiol 88:178–182

    CAS  PubMed  Google Scholar 

  • Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, others. 2003. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Sun ZR, Gantt E, Cunningham FX. 1996. Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271:24349–24352

    PubMed  CAS  Google Scholar 

  • Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, others. 2004. Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45:914–922

    PubMed  CAS  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR. 1997. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240

    PubMed  CAS  Google Scholar 

  • Tan BC, Cline K, McCarty DR. 2001. Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. Plant J 27:373–382

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu LJ, Li QB, others. 2003. Molecular characterization of the Arabidopsis 9-cis-epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  PubMed  CAS  Google Scholar 

  • Taylor HF, Smith TA. 1967. Production of plant growth inhibitors from xanthophylls: a possible source of dormin. Nature 215:1513–1514

    PubMed  CAS  Google Scholar 

  • Taylor IB, Linforth RST, Alnaieb RJ, Bowman WR, Marples BA. 1988. The wilty tomato mutants flacca and sitiens are impaired in the oxidation of ABA-aldehyde to ABA. Plant Cell Environ 11:739–745

    CAS  Google Scholar 

  • Taylor IB, Burbidge A, Thompson AJ. 2000. Control of abscisic acid synthesis. J Exp Bot 51:1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbidge A, others. 2000a. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol 42:833–845

    Article  CAS  Google Scholar 

  • Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, others. 2000b. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23:363–374

    Article  CAS  Google Scholar 

  • Thompson AJ, Thorne ET, Burbidge A, Jackson AC, Sharp RE, others. 2004. Complementation of notabilis, an abscisic acid-deficient mutant of tomato: importance of sequence context and utility of partial complementation. Plant Cell Environ 27:459–471

    CAS  Google Scholar 

  • Tian L, DellaPenna D. 2001. Characterization of a second carotenoid β-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus. Plant Mol Biol 47:379–388

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D. 2003. Functional analysis of β- and ε-ring carotenoid hydroxylases in Arabidopsis. Plant Cell 15:1320–1332

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Musetti V, Kim JY, Magallanes-Lundback M, DellaPenna D. 2004. The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid ε-ring hydroxylation activity. Proc Natl Acad Sci USA 101:402–407

    PubMed  CAS  Google Scholar 

  • Walter MH, Hans J, Strack D. 2002. Two distantly related genes encoding 1-deoxy-D-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31:243–254

    Article  PubMed  CAS  Google Scholar 

  • Woggon WD. 2002. Oxidative cleavage of carotenoids catalyzed by enzyme models and beta-carotene 15,15′-monooxygenase. Pure Appl Chem 74:1397–1408

    CAS  Google Scholar 

  • Woitsch S, Romer S. 2003. Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiol 132:1508–1517

    Article  PubMed  CAS  Google Scholar 

  • Xiong LM, Zhu JK. 2003. Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed  CAS  Google Scholar 

  • Xiong LM, Ishitani M, Lee H, Zhu JK. 2001a. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    Article  CAS  Google Scholar 

  • Xiong LM, Gong ZZ, Rock CD, Subramanian S, Guo Y, others. 2001b. Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  CAS  Google Scholar 

  • Xiong LM, Lee HJ, Ishitani M, Zhu JK. 2002. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    PubMed  CAS  Google Scholar 

  • Yoshida K, Igarashi E, Mukai M, Hirata K, Miyamoto K. 2003. Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ 26:451–457

    Article  CAS  Google Scholar 

  • Zeevaart JAD. 1999. “Abscisic acid metabolism and its regulation” In P. Hooykaas M. Hall K. Libbenga (eds.), Biochemistry and Molecular Biology of Plant Hormones, Amsterdam, The Netherlands, Elsevier Science, pp. 189–207

    Google Scholar 

  • Zeevaart JAD, Heath TG, Gage DA. 1989. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns. Plant Physiol 91:1594–1601

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian B. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, I.B., Sonneveld, T., Bugg, T.D.H. et al. Regulation and Manipulation of the Biosynthesis of Abscisic Acid, Including the Supply of Xanthophyll Precursors. J Plant Growth Regul 24, 253–273 (2005). https://doi.org/10.1007/s00344-005-0070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-005-0070-6

Keywords

Navigation