Skip to main content
Log in

Comparison of intestinal microbiota and activities of digestive and immune-related enzymes of sea cucumber Apostichopus japonicus in two habitats

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Sea cucumber Apostichopus japonicus stock enhancement by releasing hatchery-produced seeds is a management tool used to recover its population under natural environmental conditions. To assess the suitability of releasing sites, we examined the microbiota of the gut contents of A. japonicus from two populations (one in sandy-muddy seagrass beds and one in rocky intertidal reefs) and the microbiota in their surrounding sediments. The activities of digestive and immune-related enzymes in the A. japonicus were also examined. The results indicated that higher bacterial richness and Shannon diversity index were observed in all the seagrass-bed samples. There were significant differences in intestinal and sediment microorganisms between the two habitats, with a 2.87 times higher abundance of Firmicutes in the seagrass bed sediments than that in the reefs. Meanwhile, Bacteroidetes and Actinobacteria were significantly higher abundant in the gut content of A. japonicus from seagrass bed than those from the reefs. In addition, the seagrass-bed samples exhibited a relatively higher abundance of potential probiotics. Principal coordinates analysis and heatmap showed the bacterial communities were classified into two groups corresponding to the two habitat types. Moreover, compared to A. japonicus obtained from rocky intertidal habitat, those obtained from the seagrass bed showed higher lysozyme, superoxide dismutase and protease activities. Our results suggest that bacterial communities present in seagrass beds might enhance the digestive function and immunity of A. japonicus. Therefore, compared with the rocky intertidal reef, seagrass bed seems to be more beneficial for the survival of A. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balcázar J L, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz J L. 2006. The role of probiotics in aquaculture. Vet. Microbiol., 114 (3–4): 173–186.

    Article  Google Scholar 

  • Belcher P R, Consultant. 1997. Measurement of myocardial contractility. J. Cardiothor ac. Vasc. Anesth., 11 (6): 812.

    Article  Google Scholar 

  • Bérdy J. 2005. Bioactive microbial metabolites: a personal view. J. Antibiot., 58 (1): 1–26.

    Article  Google Scholar 

  • Bordbar S, Anwar F, Saari N. 2011. High-value components and bioactives from sea cucumbers for functional foods—a review. Mar. Drugs, 9 (10): 1 761–1 805.

    Article  Google Scholar 

  • Bull A T, Stach J E M. 2007. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol., 15 (11): 491–499.

    Article  Google Scholar 

  • Caporaso J G, Kuczynski J, Stombaugh J et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7 (5): 335–336.

    Article  Google Scholar 

  • Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat., 11 (4): 265–270.

    Google Scholar 

  • Cottrell M T, Kirchman D L. 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecularweight dissolved organic matter. Appl. Environ. Microbiol., 66 (4): 1 692–1 697.

    Article  Google Scholar 

  • Dou Y, Zhao X W, Ding J, He P. 2016. Application of highthroughput sequencing for analyzing bacterial communities in earthen ponds of sea cucumber aquaculture in northern China. Oceanol. Limnol. Sin., 47 (1): 122–129. (in Chinese with English abstract)

    Google Scholar 

  • Dröge S, Limper U, Emtiazi F, Schönig I, Pavlus N, Drzyzga O, Fischer U, König H. 2005. In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J. Gen. Appl. Microbiol., 51 (2): 57–64.

    Article  Google Scholar 

  • Eliseikina M G, Magarlamov T Y. 2002. Coelomocyte Morphology in the Holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russian Journal of Marine Biology, 28 (3): 197–202.

    Article  Google Scholar 

  • Fan Y, Li L, Yu X Q, Liu E F, Li T B, Xu L, Ye H B. 2015. Effect of Codonopsis pilosula as an immunopotentiator on intestinal bacterial community composition of Apostichopus japonicus. Chin. J. Anim. Nutrition, 27 (2): 638–646. (in Chinese with English abstract)

    Google Scholar 

  • Gao F, Li F H, Tan J, Yan J P, Sun H L. 2014a. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS One, 9 (6): e100092, https://doi.org/10.1371/journal.pone.0100092.

    Article  Google Scholar 

  • Gao F, Sun H L, Xu Q, Tan J, Yan J P, Wang Q Y. 2010. PCRDGGE analysis of bacterial community composition in the gut contents of Apostichopus japonicus. J. Fish. Sci. China, 17 (4): 671–680. (in Chinese with English abstract)

    Google Scholar 

  • Gao M L, Zhang G L, Hou H M. 2014b. Bacterial diversity in the intestine of Apostichopus japonicus in Dalian Bay. J. Dalian Polytech. Univ., 33 (2): 84–89. (in Chinese with English abstract)

    Google Scholar 

  • Good I J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika, 40 (3–4): 237–264.

    Article  Google Scholar 

  • Hassett R P, Landry M R. 1990. Seasonal changes in feeding rate, digestive enzyme activity, and assimilation efficiency of Calanus pacificus. Mar. Ecol. Prog. Ser., 62: 62–203.

    Article  Google Scholar 

  • Jeon Y S, Park S C, Lim J, Chun J, Kim B S. 2015. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform. J. Microbiol., 53 (1): 60–69.

    Article  Google Scholar 

  • Johnson P T. 1969. The coelomic elements of sea urchins (Strongylocentrotus) III. In vitro reaction to bacteria. J. Invertebr. Pathol., 13 (1): 42–54.

    Google Scholar 

  • Jørgensen B B. 1982. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature, 296 (5858): 643–645.

    Article  Google Scholar 

  • Jurasinski G, Retzer V, Beierkuhnlein C. 2009. Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia, 159 (1): 15–26.

    Article  Google Scholar 

  • Li Q F, Zhang Y, Juck D, Fortin N, Greer C W, Tang Q S. 2010. Phylogenetic analysis of bacterial communities in the shrimp and sea cucumber aquaculture environment in northern China by culturing and PCR-DGGE. Aquacult. Int., 18 (6): 977–990.

    Article  Google Scholar 

  • Liu X J, Zhou Y, Yang H S, Ru S G. 2013. Eelgrass detritus as a food source for the sea cucumber Apostichopus japonicus selenka (echinidermata: holothuroidea) in coastal waters of North China: an experimental study in flow-through systems. PLoS One, 8 (3): e58293, https://doi.org/10.1371/journal.pone.0058293.

    Article  Google Scholar 

  • Moriarty D J W. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Mar. Freshw. Res., 33 (2): 255–263.

    Article  Google Scholar 

  • Muyzer G, de Waal E C, Uitterlinden A G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol., 59 (3): 695–700.

    Google Scholar 

  • O'Hara A M, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Reports, 7 (7): 688–693.

    Article  Google Scholar 

  • Pan K C, Yang H B. 1997. Progress in study of mechanism of Bacillus. Feed Ind., 18 (9): 32–34.

    Google Scholar 

  • Peiffer J A, Spor A, Koren O, Jin Z, Tringe S G, Dangl J L, Buckler E S, Ley R E. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA., 110 (16): 6 548–6 553.

    Article  Google Scholar 

  • Purcell S W, Hair C A, Mills D J. 2012. Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities. Aquaculture, 368-369: 68–81.

    Article  Google Scholar 

  • Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P. 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture, 191 (4): 271–288.

    Article  Google Scholar 

  • Reyes-Bonilla H, Herrero-Pérezrul M D. 2003. Population parameters of an exploited population of Isostichopus fuscus (Holothuroidea) in the southern Gulf of California, México. Fisheries Research, 59 (3): 423–430.

    Article  Google Scholar 

  • Rosselló-Mora R, Amann R. 2001. The species concept for prokaryotes. FEMS Microbiol. Rev., 25 (1): 39–67.

    Article  Google Scholar 

  • Sögaard D H, Suhr-Jessen T. 1990. Microbials for feed beyond lactic acid bacteria. Feed Int., 11: 11–32.

    Google Scholar 

  • Sun Y, Chen D. 1989. The microbial composition of Stichopus japonicus and its physiological property. Oceanol. Limnol. Sin., 20 (4): 300–307. (in Chinese with English abstract)

    Google Scholar 

  • Uthicke S. 2004. Over fishing of holothurians: lessons from the Great Barrier Reef. In: Lovatelli A, Conand C, Purcell S, Uthicke S, Hamel J F, Mercier A eds. Advances in Sea Cucumber Aquaculture and Management. Fao Report No. 463. FAO, Rome, p.163-171.

  • Vaz-Moreira I, Egas C, Nunes O C, Manaia C M. 2011. Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie van Leeuwenhoek, 100 (2): 245–257.

    Article  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64 (4): 655–671.

    Article  Google Scholar 

  • Wang J H, Zhao L Q, Liu J F, Wang H, Xiao S. 2015. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immun ol., 43 (2): 330–336.

    Article  Google Scholar 

  • Wang Y B, Li J R, Lin J. 2008. Probiotics in aquaculture: challenges and outlook. Aquaculture, 281 (1–4): 1–4.

    Google Scholar 

  • Wu S G, Tian J Y, Gatesoupe F J, Li W X, Zou H, Yang B J, Wang T G. 2013. Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J. Microb iol. Biotechnol., 29 (9): 1 585–1 595.

    Article  Google Scholar 

  • Yuan C Y, Zhang H, Wu Y, Zhang L Y, Sun Y J. 2006. Effects of microecological preparation on growth and activities of digestive enzymes of sea cucumber Apostichopus japonicus. Fish. Sci., 25 (12): 612–615. (in Chinese with English abstract)

    Google Scholar 

  • Zhang L B, Yang H S, Xu Q et al. 2011a. A new system for the culture and stock enhancement of sea cucumber, Apostichopus japonicus (Selenka), in cofferdams. Aquac. Res., 42 (10): 1 431–1 439.

    Article  Google Scholar 

  • Zhang P D, Sun Y, Niu S N, Zhang X M. 2011b. Research progress in seegrass seed dormancy, germination, and seedling growth and related affecting factors. Chin. J. Appl. Ecol., 22 (11): 3 060–3 066. (in Chinese with English abstract)

    Google Scholar 

  • Zhang W J, Hou H M, Zhang G L, Li Q Y, Du C M. 2011c. Study on diversity of intestine cultivable microorganisms from Apostichopus japonicus. Sci. Technol. Food Ind., 32 (9): 149–151, 155. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumei Zhang  (张秀梅).

Additional information

Supported by the National Special Research Fund for Non-Profit Marine Sector (No. 201305043) and the National Natural Science Foundation of China (Nos. 31472257, 41576112)

Supported by the National Natural Science Foundation of China (No. 41506173)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, X., Chen, M. et al. Comparison of intestinal microbiota and activities of digestive and immune-related enzymes of sea cucumber Apostichopus japonicus in two habitats. J. Ocean. Limnol. 36, 990–1001 (2018). https://doi.org/10.1007/s00343-018-7075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-7075-z

Keyword

Navigation