Skip to main content
Log in

Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 21022T genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant differences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these differences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is reported here for the first time. We found that the relationships were well resolved among every genera tested, including Chromohalobacter, Halomonas, Cobetia, Kushneria, Zymobacter, and Halotalea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arahal D R, Castillo A M, Ludwig W et al. 2002a. Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Systematic and Applied Microbiology, 25 (2): 207–211.

    Article  Google Scholar 

  • Arahal D R, Ludwig W, Schleifer K H et al. 2002b. Phylogeny of the family Halomonadaceae based on 23S and 165 rDNA sequence analyses. International Journal of Systematic and Evolutionary Microbiology, 52 (1): 241–249.

    Article  Google Scholar 

  • Arpa Sancet M P. 2013. Influence of surface properties on adhesion of Cobetia marina and accumulation of marine microfoulers in the ocean. Ruperto Carola University Heidelberg, Heidelberg.

    Google Scholar 

  • Balabanova L A, Golotin V A, Kovalchuk S N et al. 2016a. The Genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853). Russian Journal of Marine Biology, 42 (1): 106–109.

    Article  Google Scholar 

  • Balabanova L, Nedashkovskaya O, Podvolotskaya A et al. 2016b. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296. Data in Brief, 8: 726–732.

    Article  Google Scholar 

  • Barak J D, Gorski L, Naraghi-Arani P et al. 2005. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Applied and Environmental Microbiology, 71 (10): 5685–5691.

    Article  Google Scholar 

  • Barnhart M M, Chapman M R. 2006. Curli biogenesis and function. Annual Review of Microbiology, 60: 131–147.

    Article  Google Scholar 

  • Baumann L, Baumann P, Mandel M et al. 1972. Taxonomy of aerobic marine eubacteria. Journal of Bacteriology, 110 (1): 402–429.

    Google Scholar 

  • Baumann L, Bowditch R D, Baumann P. 1983. Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. International Journal of Systematic and Evolutionary Microbiology, 33 (4): 793–802.

    Google Scholar 

  • Camacho C, Coulouris G, Avagyan V et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10: 421.

    Article  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in largescale phylogenetic analyses. Bioinformatics, 25 (15): 1972–1973.

    Article  Google Scholar 

  • Chin C S, Alexander D H, Marks P et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10 (6): 563–569.

    Article  Google Scholar 

  • Cobet A B, Wirsen C Jr, Jones G E. 1970. The effect of nickel on a marine bacterium, Arthrobacter marinus sp. nov. Journal of General Microbiology, 62 (2): 159–169.

    Article  Google Scholar 

  • Copeland A, O’Connor K, Lucas S et al. 2011. Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11T). Standards in Genomic Sciences, 5 (3): 379–388.

    Article  Google Scholar 

  • Darriba D, Taboada G L, Doallo R et al. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27 (8): 1164–1165.

    Article  Google Scholar 

  • de la Haba R R, Arahal D R, Márquez M C et al. 2010. Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 60 (4): 737–748.

    Article  Google Scholar 

  • Dobson S J, Franzmann P D. 1996. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. International Journal of Systematic Bacteriology, 46 (2): 550–558.

    Article  Google Scholar 

  • Eid J, Fehr A, Gray J et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science, 323 (5910): 133–138.

    Article  Google Scholar 

  • Gao F, Zhang C T. 2008. Ori-Finder: a web-based system for finding oriC s in unannotated bacterial genomes. BMC Bioinformatics, 9: 79.

    Article  Google Scholar 

  • Ista L K, Fan H Y, Baca O et al. 1996. Attachment of bacteria to model solid surfaces: oligo(ethylene glycol) surfaces inhibit bacterial attachment. FEMS Microbiology Letters, 142 (1): 59–63.

    Article  Google Scholar 

  • Ista L K, Pérez-Luna V H, López G P. 1999. Surface-grafted, environmentally sensitive polymers for biofilm release. Applied and Environmental Microbiology, 65 (4): 1603–1609.

    Google Scholar 

  • Ivanova E P, Christen R, Sawabe T et al. 2005. Presence of ecophysiologically diverse populations within Cobetia marina strains isolated from marine invertebrate, algae and the environments. Microbes and Environments, 20 (4): 200–207.

    Article  Google Scholar 

  • Jeter C, Matthysse A G. 2005. Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts. Molecular Plant-Microbe Interactions, 18 (11): 1235–1242.

    Article  Google Scholar 

  • Katoh K, Kuma K I, Toh H et al. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33 (2): 511–518.

    Article  Google Scholar 

  • Krzywinski M, Schein J, Birol I et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Research, 19 (9): 1639–1645.

    Article  Google Scholar 

  • Kurtz S, Phillippy A, Delcher A L et al. 2004. Versatile and open software for comparing large genomes. Genome Biology, 5 (2): R12.

    Article  Google Scholar 

  • Lagesen K, Hallin P, Rødland E A et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35 (9): 3100–3108.

    Article  Google Scholar 

  • Lowe T M, Eddy S R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25 (5): 955–964.

    Article  Google Scholar 

  • Mata J A, Martínez-Cánovas J, Quesada E et al. 2002. A detailed phenotypic characterisation of the type strains of Halomonas species. Systematic and Applied Microbiology, 25 (3): 360–375.

    Article  Google Scholar 

  • Miele V, Penel S, Duret L. 2011. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics, 12: 116.

    Article  Google Scholar 

  • Ntougias S, Lapidus A, Copeland A et al. 2015. High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7T, and emended description of the genus Halotalea. Standards in Genomic Sciences, 10: 52.

    Article  Google Scholar 

  • Ntougias S, Zervakis G I, Fasseas C. 2007. Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. International Journal of Systematic and Evolutionary Microbiology, 57 (9): 1975–1983.

    Article  Google Scholar 

  • Okamoto T, Taguchi H, Nakamura K et al. 1993. Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Archives of Microbiology, 160 (5): 333–337.

    Article  Google Scholar 

  • Roberts R J, Carneiro M O, Schatz M C. 2013. The advantages of SMRT sequencing. Genome biology, 14: 405.

    Article  Google Scholar 

  • Romanenko L A, Tanaka N, Svetashev V I et al. 2013. Description of Cobetia amphilecti sp. nov., Cobetia litoralis sp. nov. and Cobetia pacifica sp. nov., classification of Halomonas halodurans as a later heterotypic synonym of Cobetia marina and emended descriptions of the genus Cobetia and Cobetia marina. International Journal of Systematic and Evolutionary Microbiology, 63 (1): 288–297.

    Article  Google Scholar 

  • Salzberg S L, Delcher A L, Kasif S et al. 1998. Microbial gene identification using interpolated Markov models. Nucleic Acids Research, 26 (2): 544–548.

    Article  Google Scholar 

  • Sánchez-Porro C, de la Haba R R, Cruz-Hernández N et al. 2013. Draft Genome of the marine Gammaproteobacterium Halomonas titanicae. Genome Announcements, 1 (2): e00083–13.

    Article  Google Scholar 

  • Sánchez-Porro C, de la Haba R R, Soto-Ramírez N et al. 2009. Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. International Journal of Systematic and Evolutionary Microbiology, 59 (2): 397–405.

    Article  Google Scholar 

  • Schwibbert K, Marin-Sanguino A, Bagyan I et al. 2011. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environmental Microbiology, 13 (8): 1973–1994.

    Article  Google Scholar 

  • Sharko F S, Shapovalova A A, Tsygankova S V et al. 2016. Draft genome sequence of “Halomonas chromatireducens” Strain AGD 8-3, a Haloalkaliphilic Chromate-and Selenite-Reducing Gammaproteobacterium. Genome Announcements, 4 (2): e00160–16.

    Article  Google Scholar 

  • Shea C, Lovelace L J, Smith-Somerville H E. 1995. Deleya marina as a model organism for studies of bacterial colonization and biofilm formation. Journal of Industrial Microbiology, 15 (4): 290–296.

    Article  Google Scholar 

  • Spangenberg C, Fislage R, Sierralta W et al. 1995. Comparison of type IV-pilin genes of Pseudomonas aeruginosa of various habitats has uncovered a novel unusual sequence. FEMS Microbiology Letters, 125 (2-3): 265–273.

    Article  Google Scholar 

  • Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22 (21): 2688–2690.

    Article  Google Scholar 

  • Thomas T, Evans F F, Schleheck D et al. 2008. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS One, 3 (9): e3252.

    Article  Google Scholar 

  • Vallenet D, Belda E, Calteau A et al. 2013. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Research, 41 (D1): D636–D647.

    Article  Google Scholar 

  • Ventosa A, Gutierrez M C, Garcia M T et al. 1989. Classification of “Chromobacterium marismortuiin a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. International Journal of Systematic Bacteriology, 39 (4): 382–386.

    Article  Google Scholar 

  • Vreeland R H, Litchfield C D, Martin E L et al. 1980. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. International Journal of Systematic Bacteriology, 30 (2): 485–495.

    Article  Google Scholar 

  • Wang L, Reeves P R. 1998. Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infection and Immunity, 66 (8): 3545–3551.

    Google Scholar 

  • Wilson K. 1997. Preparation of genomic DNA from bacteria. In: Ausubel F M, Bent R, Kingston R E et al eds. Current Protocols in Molecular Biology. John Wiley & Sons, Inc., New York. p.2.4.1–2.4.5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxiang Mao  (茅云翔).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41006082, 31372517)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Xu, K., Han, X. et al. Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae. J. Ocean. Limnol. 36, 528–536 (2018). https://doi.org/10.1007/s00343-017-6239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6239-6

Keyword

Navigation