Skip to main content
Log in

Detailed magnetic characteristics of cobalt ferrite (CoxFe3−xO4) nanoparticles synthesized in the presence of PVP surfactant

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

While Co ferrite nanoparticles (NPs) have been widely considered for potential applications in magnetic storage, photocatalysts, and hyperthermia, significantly less attention has been paid to explore their detailed magnetic characteristics as a function of the Co content. Herein, a hydrothermal method was successfully used for the preparation of CoxFe3−xO4 (0.5 ≤ x ≤ 2) NPs, employing stable ferric and cobalt salts with PVP surfactant as a capping agent. Hysteresis loop measurements showed maximum coercivity (Hc) and saturation magnetization (Ms) of 982 Oe and 46 emu/g for Co0.5Fe2.5O4 and CoFe2O4 compounds, respectively. Detailed magnetic characteristics of the resulting NPs with different morphologies ranging from nanocubes to dense nanospheres were comprehensively investigated by first-order reversal curve analysis. It was found that CoxFe3−xO4 (0.5 ≤ x < 1) NPs with both spinel and hematite phases comprise noticeable hard and soft phases, whereas superparamagnetic phase starts to dominate magnetic behavior of CoxFe3−xO4 (1 ≤ x ≤ 2) NPs with reduced grain size and pure spinel phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NPs:

Nanoparticles

PVP:

Polyvinylpyrrolidone

XRD:

X-ray diffraction

FESEM:

Field emission scanning electron microscopy

VSM:

Vibrating sample magnetometry

H c :

Coercivity

M s :

Saturation magnetization

G R :

Average grain size

References

  1. S. Hazra, N. Ghosh, Preparation of nanoferrites and their applications. J. Nanosci. Nanotechnol. 14, 1983–2000 (2014)

    Google Scholar 

  2. M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 265, 29–44 (2019)

    Google Scholar 

  3. P. Seal, N. Paul, P. Babu, J. Borah, Hyperthermic efficacy of suitably functionalized MWCNT decorated with MnFe2O4 nanocomposite. Appl. Phys. A 125, 290 (2019)

    ADS  Google Scholar 

  4. M. Li, Q. Gao, T. Wang, Y.-S. Gong, B. Han, K.-S. Xia, C.-G. Zhou, Solvothermal synthesis of MnxFe3−xO4 nanoparticles with interesting physicochemical characteristics and good catalytic degradation activity. Mater. Des. 97, 341–348 (2016)

    Google Scholar 

  5. J. Estelrich, M.J. Sánchez-Martín, M.A. Busquets, Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomed. 10, 1727 (2015)

    Google Scholar 

  6. M. Rivero, A. del Campo, Á. Mayoral, E. Mazario, J. Sánchez-Marcos, A. Muñoz-Bonilla, Synthesis and structural characterization of ZnxFe3−xO4 ferrite nanoparticles obtained by an electrochemical method. RSC Adv. 6, 40067–40076 (2016)

    Google Scholar 

  7. N. Budhiraja, V. Kumar, S. Singh, Shape-controlled synthesis of superparamagnetic ZnFe2O4 hierarchical structures and their comparative structural, optical and magnetic properties. Ceram. Int. 45, 1067–1076 (2019)

    Google Scholar 

  8. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, Microstructure, porosity and magnetic properties of Zn0.5Co0.5Fe2O4/SiO2 nanocomposites prepared by sol–gel method using different polyols. J. Magn. Magn. Mater. 498, 166168 (2020)

    Google Scholar 

  9. T. Dippong, E.-A. Levei, I.G. Deac, F. Goga, O. Cadar, Investigation of structural and magnetic properties of NixZn1−xFe2O4/SiO2 (0 ≤ x ≤ 1) spinel-based nanocomposites. J. Anal. Appl. Pyrol. 144, 104713 (2019)

    Google Scholar 

  10. T. Dippong, E.A. Levei, O. Cadar, I.G. Deac, L. Diamandescu, L. Barbu-Tudoran, Effect of nickel content on structural, morphological and magnetic properties of NixCo1−xFe2O4/SiO2 nanocomposites. J. Alloys Compd. 786, 330–340 (2019)

    Google Scholar 

  11. S. Nasrin, F.-U.-Z. Chowdhury, M. Hasan, M. Hossen, S. Ullah, S. Hoque, Effect of zinc substitution on structural, morphological and magnetic properties of cobalt nanocrystalline ferrites prepared by co-precipitation method. J. Mater. Sci. Mater. Electron. 29, 18878–18889 (2018)

    Google Scholar 

  12. T. Shahjuee, S. Masoudpanah, S. Mirkazemi, Thermal decomposition synthesis of MgFe2O4 nanoparticles for magnetic hyperthermia. J. Supercond. Nov. Magn. 32, 1347–1352 (2019)

    Google Scholar 

  13. M. Junaid, M.A. Khan, F. Iqbal, G. Murtaza, M.N. Akhtar, M. Ahmad, I. Shakir, M.F. Warsi, Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li–Ni nano-ferrites synthesized via micro-emulsion route. J. Magn. Magn. Mater. 419, 338–344 (2016)

    ADS  Google Scholar 

  14. P. Dolcet, S. Diodati, F. Zorzi, P. Voepel, C. Seitz, B.M. Smarsly, S. Mascotto, F. Nestola, S. Gross, Very fast crystallisation of MFe2O4 spinel ferrites (M = Co, Mn, Ni, Zn) under low temperature hydrothermal conditions: a time-resolved structural investigation. Green Chem. 20, 2257–2268 (2018)

    Google Scholar 

  15. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A 125, 477 (2019)

    ADS  Google Scholar 

  16. M. Abdellatif, A. Azab, M. Salerno, Effect of rare earth doping on the vibrational spectra of spinel Mn–Cr ferrite. Mater. Res. Bull. 97, 260–264 (2018)

    Google Scholar 

  17. A. Rinkevich, A. Korolev, M. Samoylovich, S. Klescheva, D. Perov, Magnetic properties of nanocomposites based on opal matrices with embedded ferrite-spinel nanoparticles. J. Magn. Magn. Mater. 399, 216–220 (2016)

    ADS  Google Scholar 

  18. L. Ai, J. Jiang, Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Curr. Appl. Phys. 10, 284–288 (2010)

    ADS  Google Scholar 

  19. S. Asiri, M. Sertkol, H. Güngüneş, M. Amir, A. Manikandan, İ. Ercan, A. Baykal, The temperature effect on magnetic properties of NiFe2O4 nanoparticles. J. Inorg. Organomet. Polym Mater. 28, 1587–1597 (2018)

    Google Scholar 

  20. A. Makridis, I. Chatzitheodorou, K. Topouridou, M. Yavropoulou, M. Angelakeris, C. Dendrinou-Samara, A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. Mater. Sci. Eng. C 63, 663–670 (2016)

    Google Scholar 

  21. T. Dippong, E.A. Levei, C. Tanaselia, M. Gabor, M. Nasui, L.B. Tudoran, G. Borodi, Magnetic properties evolution of the CoxFe3−xO4/SiO2 system due to advanced thermal treatment at 700 °C and 1000 °C. C J. Magn. Magn. Mater. 410, 47–54 (2016)

    ADS  Google Scholar 

  22. T. Dippong, E.A. Levei, G. Borodi, F. Goga, L.B. Tudoran, Influence of Co/Fe ratio on the oxide phases in nanoparticles of CoxFe3−xO4. J. Therm. Anal. Calorim. 119, 1001–1009 (2015)

    Google Scholar 

  23. M.H. Mokarian, M. Almasi-kashi, S. Alikhanzadeh-Arani, A. Ramazani, The fcc/bcc phase transition in FexNi100−x nanoparticles resolved by first-order reversal curves. J. Mater. Sci. 52, 7831–7842 (2017)

    ADS  Google Scholar 

  24. A. Sharma, M.D. DiVito, D.E. Shore, A.D. Block, K. Pollock, P. Solheid, J.M. Feinberg, J. Modiano, C.H. Lam, A. Hubel, Alignment of collagen matrices using magnetic nanowires and magnetic barcode readout using first order reversal curves (FORC). J. Magn. Magn. Mater. 459, 176–181 (2018)

    ADS  Google Scholar 

  25. A. Samardak, A. Ognev, A.Y. Samardak, E. Stebliy, E. Modin, L. Chebotkevich, S. Komogortsev, A. Stancu, E. Panahi-Danaei, A. Fardi-Ilkhichy, Variation of magnetic anisotropy and temperature-dependent FORC probing of compositionally tuned Co–Ni alloy nanowires. J. Alloys Compd. 732, 683–693 (2018)

    Google Scholar 

  26. M. Kumari, M. Widdrat, É. Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, A.M. Hirt, Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J. Appl. Phys. 116, 124304 (2014)

    ADS  Google Scholar 

  27. M. Almasi-Kashi, A. Ramazani, S. Alikhanzadeh-Arani, Z. Pezeshki-Nejad, A.H. Montazer, Synthesis, characterization and magnetic properties of hollow Co2FeAl nanoparticles: the effects of heating rate. New J. Chem. 40, 5061–5070 (2016)

    Google Scholar 

  28. K. Baishya, J.S. Ray, P. Dutta, P.P. Das, S.K. Das, Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation. Appl. Phys. A 124, 704 (2018)

    ADS  Google Scholar 

  29. C. Pike, First-order reversal-curve diagrams and reversible magnetization. Phys. Rev. B 68, 104424 (2003)

    ADS  Google Scholar 

  30. R. Betancourt-Galindo, O. Ayala-Valenzuela, L. García-Cerda, O.R. Fernández, J. Matutes-Aquino, G. Ramos, H. Yee-Madeira, Synthesis and magneto-structural study of CoxFe3−xO4 nanoparticles. J. Magn. Magn. Mater. 294, e33–e36 (2005)

    Google Scholar 

  31. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley, NewYork, 2011)

    Google Scholar 

  32. K. Kobayashi, R. Skomski, J. Coey, Dependence of coercivity on particle size in Sm2Fe17N3 powders. J. Alloys Compd. 222, 1–7 (1995)

    Google Scholar 

  33. M. Sajjia, M. Oubaha, M. Hasanuzzaman, A. Olabi, Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceram. Int. 40, 1147–1154 (2014)

    Google Scholar 

  34. N. Sanpo, J. Wang, C.C. Berndt, Influence of chelating agents on the microstructure and antibacterial property of cobalt ferrite nanopowders. J. Aust. Ceram. Soc. 49, 84–91 (2013)

    Google Scholar 

  35. T. Prabhakaran, J. Hemalatha, Chemical control on the size and properties of nano NiFe2O4 synthesized by sol–gel autocombustion method. Ceram. Int. 40, 3315–3324 (2014)

    Google Scholar 

  36. U. Ghazanfar, S. Siddiqi, G. Abbas, Structural analysis of the Mn–Zn ferrites using XRD technique. Mater. Sci. Eng. B 118, 84–86 (2005)

    Google Scholar 

  37. P. Lavela, G. Ortiz, J. Tirado, E. Zhecheva, R. Stoyanova, S. Ivanova, High-performance transition metal mixed oxides in conversion electrodes: a combined spectroscopic and electrochemical study. J. Phys. Chem. C 111, 14238–14246 (2007)

    Google Scholar 

  38. G. Subías, V. Cuartero, J. García, J. Blasco, S. Lafuerza, S. Pascarelli, O. Mathon, C. Strohm, K. Nagai, M. Mito, Investigation of pressure-induced magnetic transitions in CoxFe3−xO4 spinels. Phys. Rev. B 87, 094408 (2013)

    ADS  Google Scholar 

  39. M. Valant, A.K. Axelsson, F. Aguesse, N.M. Alford, Molecular auxetic behavior of epitaxial co-ferrite spinel thin film. Adv. Funct. Mater. 20, 644–647 (2010)

    Google Scholar 

  40. L. Demarchis, F. Sordello, M. Minella, C. Minero, Tailored properties of hematite particles with different size and shape. Dyes Pigments 115, 204–210 (2015)

    Google Scholar 

  41. H. Song, Y. Sun, X. Jia, Hydrothermal synthesis, growth mechanism and gas sensing properties of Zn-doped α-Fe2O3 microcubes. Ceram. Int. 41, 13224–13231 (2015)

    Google Scholar 

  42. M.K. Sinha, S.K. Sahu, P. Meshram, L. Prasad, B.D. Pandey, Low temperature hydrothermal synthesis and characterization of iron oxide powders of diverse morphologies from spent pickle liquor. Powder Technol. 276, 214–221 (2015)

    Google Scholar 

  43. Z. Pezeshki-Nejad, S. Alikhanzadeh-Arani, M.A. Kashi, Magnetic phase tuning of diluted Fe-doped CuO nanoparticles through annealing temperature as characterized by first-order reversal curve analysis. J. Magn. Magn. Mater. 482, 301–311 (2019)

    ADS  Google Scholar 

  44. A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. Solid Earth 105, 28461–28475 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of Kashan for providing the financial support of this work by Grant No.159023/74.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Almasi Kashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasi Kashi, M., Alikhanzadeh-Arani, S., Bagherian Jebeli, E. et al. Detailed magnetic characteristics of cobalt ferrite (CoxFe3−xO4) nanoparticles synthesized in the presence of PVP surfactant. Appl. Phys. A 126, 250 (2020). https://doi.org/10.1007/s00339-020-3427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3427-6

Keywords

Navigation