Skip to main content
Log in

Structural, morphological and magnetic study of hydrothermal La3+ substitution in Mn–Zn nanoferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles were one of the most promising materials for targeted magnetic hyperthermia application due to the excellent magnetic properties. In this work, the magnetic nanoferrite of Mn0.6Zn0.4LaxFe2−xO4 (x = 0.09, 0.1, 0.15, 0.2, 0.25 and 0.3) was synthesized by the hydrothermal method. Various physical properties of samples have been characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy and vibrating sample magnetometer. XRD results revealed that the lattice constants at and crystallite size of the Mn–Zn nanoferrites decreased with increasing La3+ content. The characteristic absorption bands of spinel nanoferrites and polyethylene glycol were observed in the FTIR spectra. FTIR results indicated that polyethylene glycol was coated on the Mn–Zn nanoferrites successfully. The saturation magnetization (MS), magnetic moment (Mr) and anisotropy constant (K) were affected by La3+ ion content. The MS of Mn0.6Zn0.4La0.09Fe1.91O4 was 58 emu/g, which could be potential hyperthermia in biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Venditti, Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: a review. J. King Saud Univ. Sci. 31(3), 398–411 (2019)

    Google Scholar 

  2. M. Jeun, S. Park, G.H. Jang, H. Leek, Tailoring MgxMn1−xFe2O4 superparamagnetic nanoferrites for magnetic fluid hyperthermia applications. ACS Appl. Mater. Interfaces 6(19), 16487–16492 (2014)

    Google Scholar 

  3. I. Venditti, Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications. A mini review. Bioengineering 6(2), 1–26 (2019)

    Google Scholar 

  4. M.K. Yu, Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, Drug-loaded super paramagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. 47, 5362–5366 (2010)

    Google Scholar 

  5. Z.W. Chen, J.J. Yin, Y.T. Zhou, Y. Zhang, L.N. Song, M.J. Song, Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6, 4001–4012 (2012)

    Google Scholar 

  6. J.H. Lee, J.T. Jang, J.S. Choi, S.H. Moon, S.H. Noh, J.W. Kim, I.S. Kim, K.I. Park, J. Cheon, Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–440 (2011)

    ADS  Google Scholar 

  7. M.A. Mashhadi, A. Ramazani, S.J. Tabatabaei, H. Niknejad, Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci. 490, 64–73 (2017)

    ADS  Google Scholar 

  8. P.F. Chen, H. Song, S. Yao, X. Tu, M. Su, Magnetic targeted nanoparticles based on β-cyclodextrin and chitosan for hydrophobic drug delivery and a study of their mechanism. RSC. Adv. 462, 9025–29034 (2017)

    Google Scholar 

  9. J. Gao, H. Gu, B. Xu, ChemInform abstract: multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Prog. Chem. 41, 1097–1107 (2010)

    Google Scholar 

  10. V.M. Khot, A.B. Salunkhe, J.M. Ruso, S.H. Pawar, Improved magnetic induction heating of nanoferrites for hyperthermia applications: correlation with colloidal stability and magneto-structural properties. J. Magn. Magn. Mater. 384, 335–343 (2015)

    ADS  Google Scholar 

  11. E. Petrova, D. Kotsikau, V. Pankov, A. Fahmi, Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn-ferrite nanopowders. J. Magn. Magn. Mater. 473, 85–91 (2019)

    ADS  Google Scholar 

  12. K. Arati, C.J. Andrew, L. Dmitri, C.W. Richard, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14, 15977–16009 (2013)

    Google Scholar 

  13. M.A. Khan, M. Sabir, A. Mahmood, A. Asghar, K. Mahamood, A.M. Khan, I. Ahmad, M. Sher, W.F. Warsi, High frequency dielectric response and magnetic studies of Zn1−xTbxFe2O4 nano-crystalline ferrites synthesized via micro-emulsion technique. J. Magn. Magn. Mater. 360, 188–192 (2014)

    ADS  Google Scholar 

  14. H. Malik, A. Mahmood, K. Mahmood, M.Y. Lodhi, M.F. Warsi, Influence of cobalt substitution on the magnetic properties of zinc nano-crystals synthesized via micro-emulsion route. Ceram. Int. 40, 9439–9444 (2014)

    Google Scholar 

  15. G.S. Shahane, A. Kumar, M. Arora, R.P.P. Pant, K. Lal, Synthesis and characterization of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322, 1015–1019 (2010)

    ADS  Google Scholar 

  16. M.A. Khan, M.U. Islam, M.A. Iqbal, M.A. Iqbal, M.F. Din, I. Ahmad, M.F. Warsi, Magnetic, ferromagnetic resonance and electrical transport study of Ni1−xTbxFe2O4 spinel ferrites. Ceram. Int. 40, 3571–3577 (2014)

    Google Scholar 

  17. J. Xie, Y. Zhang, C.Y. Yan, L. Song, S. Wen, High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 35, 9126–9136 (2014)

    Google Scholar 

  18. K. Praveenaa, K. Sadhana, S. Matteppanavar, H.L. Liu, Effect of sintering temperature on the structural, dielectric and magnetic properties of Ni0.4Zn0.2Mn0.4Fe2O4 potential for radar absorbing. J. Magn. Magn. Mater. 423, 343–352 (2017)

    ADS  Google Scholar 

  19. M. Lin, J. Huang, J. Zhuang, L. Wang, W. Xiao, H. Yu, Y. Li, H. Li, C. Yuan, X. Hou, H. Zhang, D. Zhang, The therapeutic effect of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet-induced heating on hepatoma. Nanoscale 5, 991–1000 (2012)

    ADS  Google Scholar 

  20. S. Nasrin, F.U.Z. Chowdhury, S.M. Hoque, Study of hyperthermia temperature of manganese-substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application. J. Magn. Magn. Mater. 479, 126–134 (2019)

    ADS  Google Scholar 

  21. J. Xie, C.Y. Yan, Y. Yan, L. Chen, L. Song, F.C. Zang, Y.L. An, G.J. Teng, N. Gu, Y. Zhang, Multi-modal Mn–Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale 8, 16902–16916 (2016)

    Google Scholar 

  22. M. Kumagai, T.K. Sarma, H. Cabral, S. Kaida, M. Sekino, N. Herlambang, Enhanced in vivo magnetic resonance imaging of tumors by PEGylated iron-oxide–gold core–shell nanoparticles with prolonged blood circulation properties. Macromol. Rapid Commun. 31, 1521–1528 (2010)

    Google Scholar 

  23. J.P. May, S.D. Li, Hyperthermia-induced drug targeting. Expert Opin. Drug Deliv. 10, 511–527 (2013)

    Google Scholar 

  24. K.H. Bae, M. Park, M.J. Do, N. Lee, J.H. Ryu, G.W. Kim, Chitosan oligosaccharide stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6, 5266–5273 (2012)

    Google Scholar 

  25. S. Kuai, Z. Nan, Formation mechanism of monodisperse Ce3+ substituted ZnFe2O4 nanoparticles. J. Alloys Compd. 602, 228–234 (2014)

    Google Scholar 

  26. M.L. Desai, S. Jha, H. Basu, R. Singhal, P.K. Sharma, S. Kailasa, Microwave-assisted synthesis of water-soluble Eu3+ hybrid carbon dots with enhanced fluorescence for the sensing of Hg2+ ions and imaging of fungal cells. New J. Chem. 42(8), 6125–6133 (2018)

    Google Scholar 

  27. R. Pandey, L.K. Pradhan, M. Kar, Structural, magnetic, and electrical properties of (1–x)Bi0.85La0.15FeO3−x CoFe2O4 multiferroic composites. J. Chem. Solids 115, 42–48 (2018)

    ADS  Google Scholar 

  28. M. Hashim, S.E. Alimuddin, S. Shirsat, P. Kumar, Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloys Compd. 549, 348–357 (2013)

    Google Scholar 

  29. V. Chaudhari, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.B. Shelke, Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2−xO4 nanoparticles fabricated by sol-gel method. J. Alloys Compd. 549, 213–220 (2013)

    Google Scholar 

  30. R. Tholkappiyan, K. Vishista, Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method. Phys. B 448, 177–183 (2014)

    ADS  Google Scholar 

  31. K. Lawrence, K. Manoranjan, Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite. Ceram. Int. 38, 4771–4782 (2012)

    Google Scholar 

  32. S. Uih, K.S. Kallol, G. Murugesan, S. Kalainathan, A study on dielectric and magnetic properties of lanthanum substituted cobalt ferrite. J. Alloys Compd. 701, 612–618 (2017)

    Google Scholar 

  33. L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, S. Feng, Magnetic properties of Re-substituted Ni–Mn ferrite nanocrystallites. J. Mater. Sci. 42, 686–691 (2007)

    ADS  Google Scholar 

  34. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1−xZnxFe2O4 ferrites. Phys. B 407, 795–804 (2012)

    ADS  Google Scholar 

  35. S. Bhukal, M. Dhiman, S. Bansal, K.M. Tripathi, S. Singhal, Substituted Co–Cu–Zn nanoferrites: synthesis, fundamental and redox catalytic properties for the degradation of methyl orange. RSC Adv. 6, 1360–1375 (2016)

    Google Scholar 

  36. M.F. Al-Hilli, S. Li, K.S. Kassim, Structural analysis, magnetic and electrical properties of samarium substituted lithium–nickel mixed ferrites. J. Magn. Magn. Mater. 324, 873–879 (2012)

    ADS  Google Scholar 

  37. M.A. Amer, T.M. Meaz, S.S. Attalah, A.I. Ghoneim, Structural and magnetic characterization of the Mg0.2−xSrxMn0.8Fe2O4 nanoparticles. J. Magn. Magn. Mater. 363, 60–65 (2014)

    ADS  Google Scholar 

  38. A. Hassan, M.A. Khan, M. Shahid, M. Asghar, I. Shakir, S. Naseem, S. Riaz, M.F. Warsi, Nanocrystalline Zn1−xCo0.5xNi0.5xFe2O4 ferrites: fabrication via coprecipitation route with enhanced magnetic and electrical properties. J. Magn. Magn. Mater. 393, 56–61 (2015)

    ADS  Google Scholar 

  39. J. John, M.A. Khadar, Investigation of mixed spinel structure of nanostructured nickel ferrite. J. Appl. Phys. 107, 114310–114320 (2010)

    ADS  Google Scholar 

  40. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394–397 (1996)

    ADS  Google Scholar 

  41. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Magnetic properties of rare earth ion (Sm3+) added nanocrystalline Mg–Cd ferrites, prepared by oxalate co-precipitation method. J. Magn. Magn. Mater. 322, 3823–3827 (2010)

    ADS  Google Scholar 

  42. A. Loganathan, K. Kumar, Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures. Appl. Nanosci. 6, 629–639 (2016)

    ADS  Google Scholar 

  43. W.S. Chiu, S. Radiman, R.A. Shukor, M.H. Abdullah, P.S. Khiew, Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J. Alloys Compd. 459, 291–297 (2008)

    Google Scholar 

  44. A.M. Cojocariu, M. Soroceanu, L. Hrib, V. Nica, O.F. Caltun, Microstructure and magnetic properties of substituted (Cr, Mn)-cobalt ferrite nanoparticles. Mater. Chem. Phys. 135, 728–732 (2012)

    Google Scholar 

  45. J. Xie, C.Z. Yan, Y. Zhang, N. Gu, Shape evolution of “multibranched” Mn–Zn ferrite nanostructures with high performance: a transformation of nanocrystals into nanoclusters. Chem. Mater. 25, 3702–3709 (2013)

    Google Scholar 

  46. N. Lenin, R.P. Kanna, K. Sakthipandi, A.S. Kumar, Structural, electrical and magnetic properties of NiLaxFe2−xO4 nanoferrites. Mater. Chem. Phys. 212, 385–393 (2018)

    Google Scholar 

  47. R.R. Kanna, N. Lenin, K. Sakthipandi, M. Sivabharathy, Impact of lanthanum on structural, optical, dielectric and magnetic properties of Mn1−xCuxFe1.85La0.15O4 spinel nanoferrites. Ceram. Int. 43, 15868–15879 (2017)

    Google Scholar 

  48. L. Sun, J.Q. Guo, Q. Ni, E.S. Cao, Y.J. Zhang, W.T. Hao, L. Ju, Effct of Zn2+ doping on the structural, magnetic and dielectric properties of MnFe2O4 prepared by the sol-gel method. J. Mater. Sci Mater. Electron. 29, 5356–5362 (2018)

    Google Scholar 

  49. S. Khoee, G. Yousefalizadeh, A. Kavand, Preparation of dual-targeted redox-responsive nanogels based on pegylated sorbitan for targeted and antitumor drug delivery. Eur. Polym. J. 95, 448–461 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the planned Science and Technology Project of Hunan Province, China (2016TP1028), the project of Education department of Hunan Province (19B295) and the double first-class discipline construction program of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengyan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, F., Lin, J., Wu, T. et al. Structural, morphological and magnetic study of hydrothermal La3+ substitution in Mn–Zn nanoferrites. Appl. Phys. A 126, 221 (2020). https://doi.org/10.1007/s00339-020-3406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3406-y

Keywords

Navigation