Skip to main content
Log in

A novel method for graphene synthesis via electrochemical process and its utilization in organic photovoltaic devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphene nanosheets have been prepared from fine graphite powders by a novel electrochemical exfoliation method using non-volatile sulfate salts. This new method utilizes a stainless steel wire cage and platinum wire electrodes to exfoliate pre-pelleted graphite powders into graphene sheets. Synthesized graphene samples have been characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Raman spectroscopy, and Fourier Transform Infrared (FT-IR) spectroscopy. The obtained supernatant shows a stable suspension in DMF. This suspension was then used in organic solar cells (OSCs) as an additive to poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS). Organic solar cells have been prepared using Indium Tin Oxide (ITO) as the transparent conducting oxide, PEDOT:PSS-Graphene as the hole transport layer (HTL), Poly(3-hexylthiophene-2,5-diyl:[6,6]-Phenyl-C60-butyric acid methyl ester (P3HT:PCBM) as the active layer and Aluminum as the cathode, in ITO/PEDOT:PSS-Graphene/P3HT:PCBM/Al configuration. The photovoltaic cell prepared with graphene as an additive inside PEDOT:PSS exhibited over 66% improvement compared to the reference cells employing pure PEDOT:PSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov et al., “Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, V.I. FalKo, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012). https://doi.org/10.1038/nature11458

    Article  ADS  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat Mater 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  4. P. Blake et al., Graphene-based liquid crystal device. Nano Lett 8(6), 1704–1708 (2008). https://doi.org/10.1021/nl080649i

    Article  ADS  Google Scholar 

  5. C.J. Hung, P. Lin, T.Y. Tseng, High energy density asymmetric pseudocapacitors fabricated by graphene/carbon nanotube/MnO2 plus carbon nanotubes nanocomposites electrode. J Power Sources 259, 145–153 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.094

    Article  Google Scholar 

  6. H.X. Wang, Q. Wang, K.G. Zhou, H.L. Zhang, Graphene in light: Design, synthesis and applications of photo-active graphene and graphene-like materials. Small 9(8), 1266–1283 (2013). https://doi.org/10.1002/smll.201203040

    Article  ADS  Google Scholar 

  7. J.P. Llinas et al., Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat Commun 8(1), 8–13 (2017). https://doi.org/10.1038/s41467-017-00734-x

    Article  ADS  Google Scholar 

  8. E.B. Bahadir, M.K. Sezgintürk, Applications of graphene in electrochemical sensing and biosensing. TrAC Trends Anal Chem 76, 1–14 (2016). https://doi.org/10.1016/j.trac.2015.07.008

    Article  Google Scholar 

  9. S.H. Hsieh, M.C. Hsu, W.L. Liu, W.J. Chen, Study of Pt catalyst on graphene and its application to fuel cell. Appl Surf Sci 277, 223–230 (2013). https://doi.org/10.1016/j.apsusc.2013.04.029

    Article  ADS  Google Scholar 

  10. H.-W. Ha, I.Y. Kim, S.-J. Hwang, R.S. Ruoff, One-pot synthesis of platinum nanoparticles embedded on reduced graphene oxide for oxygen reduction in methanol fuel cells. Electro Chem Solid-State Lett 14(7), B70 (2011). https://doi.org/10.1149/1.3584092

    Article  Google Scholar 

  11. J.G. Radich, P.J. McGinn, P.V. Kamat, Graphene-based composites for electrochemical energy storage. Interface Mag 20(1), 63–66 (2016). https://doi.org/10.1149/2.f08111if

    Article  Google Scholar 

  12. S. Wu, R. Ge, M. Lu, R. Xu, Z. Zhang, Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery. Nano Energy 15, 379–405 (2015). https://doi.org/10.1016/j.nanoen.2015.04.032

    Article  Google Scholar 

  13. J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Imaging and dynamics of light atoms and molecules on graphene. Nature 454(7202), 319–322 (2008). https://doi.org/10.1038/nature07094

    Article  ADS  Google Scholar 

  14. C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Appl Mater Interface 8(24), 15232–15241 (2016). https://doi.org/10.1021/acsami.6b02607

    Article  Google Scholar 

  15. H.S. Dehsari, E.K. Shalamzari, J.N. Gavgani, F.A. Taromi, S. Ghanbary, Efficient preparation of ultralarge graphene oxide using a PEDOT:PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv 4(98), 55067–55076 (2014). https://doi.org/10.1039/c4ra09474c

    Article  Google Scholar 

  16. L. Kavan, J.H. Yum, M. Grätzel, Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5(1), 165–172 (2011). https://doi.org/10.1021/nn102353h

    Article  Google Scholar 

  17. B. Paci et al., Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: Nanoscale insight into structural/interfacial properties and aging effects. RSC Adv 5(129), 106930–106940 (2015). https://doi.org/10.1039/c5ra24010g

    Article  Google Scholar 

  18. M. Li et al., Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Phys Chem Phys 15(43), 18973–18978 (2013). https://doi.org/10.1039/c3cp53283f

    Article  Google Scholar 

  19. A.M. Alexeev, M.D. Barnes, V.K. Nagareddy, M.F. Craciun, C.D. Wright, A simple process for the fabrication of large-area CVD graphene based devices via selective in situ functionalization and patterning. Materials 41, 1–8 (2017)

    Google Scholar 

  20. D.V. Kosynkin et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). https://doi.org/10.1038/nature07872

    Article  ADS  Google Scholar 

  21. P. Wu et al., Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance. J Energy Chem 27(5), 1509–1515 (2018). https://doi.org/10.1016/j.jechem.2017.09.018

    Article  Google Scholar 

  22. N.W. Pu, C.A. Wang, Y. Sung, Y.M. Liu, M. Der Ger, Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63(23), 1987–1989 (2009). https://doi.org/10.1016/j.matlet.2009.06.031

    Article  Google Scholar 

  23. N.M. Huang, H.N. Lim, C.H. Chia, M.A. Yarmo, M.R. Muhamad, Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomed 6, 3443–3448 (2011). https://doi.org/10.2147/IJN.S26812

    Article  Google Scholar 

  24. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett 8(6), 1679–1682 (2008). https://doi.org/10.1021/nl080604h

    Article  ADS  Google Scholar 

  25. Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Y. Xu_et al_G. Shi_Flexible graphene films via the filtration of water soluble non covalent functionalized graphene sheets_JACS_130_2008.pdf. J Am Chem Soc 130, 5856–5857 (2008)

    Article  Google Scholar 

  26. H.R. Kim, S.H. Lee, K.H. Lee, Scalable production of large single-layered graphenes by microwave exfoliation ‘in deionized water.’ Carbon NY 134, 431–438 (2018). https://doi.org/10.1016/j.carbon.2018.04.014

    Article  Google Scholar 

  27. P. King et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13(6), 624–630 (2014). https://doi.org/10.1038/nmat3944

    Article  ADS  Google Scholar 

  28. J.S.Y. Chia et al., A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application. Chem Eng J 249, 270–278 (2014). https://doi.org/10.1016/j.cej.2014.03.081

    Article  Google Scholar 

  29. P.E. Resmi, A.L. Palaniayappan, T. Ramachandran, T.G.S. Babu, Electrochemical synthesis of graphene and its application in electrochemical sensing of glucose. Mater Today Proc 5(8), 16487–16493 (2018). https://doi.org/10.1016/j.matpr.2018.06.001

    Article  Google Scholar 

  30. Y.L. Zhong, Z. Tian, G.P. Simon, D. Li, Scalable production of graphene via wet chemistry: progress and challenges. Mater Today 18(2), 73–78 (2015). https://doi.org/10.1016/j.mattod.2014.08.019

    Article  Google Scholar 

  31. J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133(23), 8888–8891 (2011). https://doi.org/10.1021/ja203725d

    Article  Google Scholar 

  32. A.T. Najafabadi, E. Gyenge, High-yield graphene production by electrochemical exfoliation of graphite: novel ionic liquid (IL)-acetonitrile electrolyte with low IL content. Carbon NY 71(58–69), 2014 (2014)

    Google Scholar 

  33. A.M. Abdelkader, I.A. Kinloch, R.A.W. Dryfe, Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents. ACS Appl Mater Interfaces 6(3), 1632–1639 (2014). https://doi.org/10.1021/am404497n

    Article  Google Scholar 

  34. Y.R. Leroux, J.F. Bergamini, S. Ababou, J.C. Le Breton, P. Hapiot, Synthesis of functionalized few-layer graphene through fast electrochemical expansion of graphite. J Electroanal Chem 753, 42–46 (2015). https://doi.org/10.1016/j.jelechem.2015.06.013

    Article  Google Scholar 

  35. G.M. Morales et al., High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon NY 49(8), 2809–2816 (2011). https://doi.org/10.1016/j.carbon.2011.03.008

    Article  Google Scholar 

  36. S. Yang, M.R. Lohe, K. Müllen, X. Feng, New-generation graphene from electrochemical approaches: production and applications. Adv Mater 1, 6213–6221 (2016). https://doi.org/10.1002/adma.201505326

    Article  Google Scholar 

  37. S. Bandi, S. Ravuri, D.R. Peshwe, A.K. Srivastav, Graphene from discharged dry cell battery electrodes. J Hazard Mater 126(1), 358–369 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.005

    Article  Google Scholar 

  38. K. Parvez et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16), 6083–6091 (2014). https://doi.org/10.1021/ja5017156

    Article  Google Scholar 

  39. M. Coroş et al., Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Adv 6(4), 2651–2661 (2016). https://doi.org/10.1039/c5ra19277c

    Article  Google Scholar 

  40. A.M. Abdelkader, A.J. Cooper, R.A.W. Dryfe, I.A. Kinloch, How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7(16), 6944–6956 (2015). https://doi.org/10.1039/c4nr06942k

    Article  ADS  Google Scholar 

  41. J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-pot synthesis of fluorescent carbon graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8), 2367–2375 (2009). https://doi.org/10.1021/nn900546b

    Article  Google Scholar 

  42. H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1), 45–61 (2006). https://doi.org/10.1039/b510618b

    Article  Google Scholar 

  43. T. Mahmoudi, Y. Wang, Y.B. Hahn, Graphene and its derivatives for solar cells application. Nano Energy 47(February), 51–65 (2018). https://doi.org/10.1016/j.nanoen.2018.02.047

    Article  Google Scholar 

  44. V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl Phys Lett 88(7), 1–4 (2006). https://doi.org/10.1063/1.2174093

    Article  Google Scholar 

  45. M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci 105(8), 2783–2787 (2008). https://doi.org/10.1073/pnas.0711990105

    Article  ADS  Google Scholar 

  46. X. Fan et al., PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci 6, 19 (2019). https://doi.org/10.1002/advs.201900813

    Article  Google Scholar 

  47. J. Cameron, P.J. Skabara, The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater Horizons 7(7), 1759–1772 (2020). https://doi.org/10.1039/c9mh01978b

    Article  Google Scholar 

  48. N. Wijeyasinghe et al., Copper(I) Thiocyanate (CuSCN) hole-transport layers processed from aqueous precursor solutions and their application in thin-film transistors and highly efficient organic and organometal halide perovskite solar cells. Adv Funct Mater 27(35), 1–13 (2017). https://doi.org/10.1002/adfm.201701818

    Article  Google Scholar 

  49. J.R. Manders et al., Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv Funct Mater 23(23), 2993–3001 (2013). https://doi.org/10.1002/adfm.201202269

    Article  Google Scholar 

  50. X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat Mater 15(4), 383–396 (2016). https://doi.org/10.1038/nmat4599

    Article  ADS  Google Scholar 

  51. Y. Lin et al., 17.1% efficient single-junction organic solar cells enabled by n-type doping of the bulk-heterojunction. Adv Sci 7(7), 1–9 (2020). https://doi.org/10.1002/advs.201903419

    Article  Google Scholar 

  52. C.T.G. Smith et al., Graphene oxide hole transport layers for large area, high efficiency organic solar cells. Appl Phys Lett 105, 7 (2014). https://doi.org/10.1063/1.4893787

    Article  Google Scholar 

  53. E. Stratakis, K. Savva, D. Konios, C. Petridis, E. Kymakis, Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers. Nanoscale 6(12), 6925–6931 (2014). https://doi.org/10.1039/c4nr01539h

    Article  ADS  Google Scholar 

  54. S. Bae, J.U. Lee, H.S. Park, E.H. Jung, J.W. Jung, W.H. Jo, Enhanced performance of polymer solar cells with PSSA-g-PANI/graphene oxide composite as hole transport layer. Sol Energy Mater Sol Cells 130, 599–604 (2014). https://doi.org/10.1016/j.solmat.2014.08.006

    Article  Google Scholar 

  55. J. Oh et al., Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres. J Mater Chem 20(41), 9200–9204 (2010). https://doi.org/10.1039/c0jm00107d

    Article  Google Scholar 

  56. V.K. Singh, M.K. Patra, M. Manoth, G.S. Gowd, S.R. Vadera, N. Kumar, In situ synthesis of graphene oxide and its composites with iron oxide. New Carbon Mater 24(2), 147–152 (2009). https://doi.org/10.1016/s1872-5805(08)60044-x

    Article  Google Scholar 

  57. A. Mir, A. Shukla, Bilayer-rich graphene suspension from electrochemical exfoliation of graphite. Mater Des 156, 62–70 (2018). https://doi.org/10.1016/j.matdes.2018.06.035

    Article  Google Scholar 

  58. R. Bakhshandeh, A. Shafiekhani, Ultrasonic waves and temperature effects on graphene structure fabricated by electrochemical exfoliation method. Mater Chem Phys 212, 95–102 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.004

    Article  Google Scholar 

  59. L.L. Tan, W.J. Ong, S.P. Chai, A.R. Mohamed, Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res Lett 8(1), 1–9 (2013). https://doi.org/10.1186/1556-276X-8-465

    Article  Google Scholar 

  60. K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem 35(2), 353–359 (2011). https://doi.org/10.1039/c0nj00623h

    Article  Google Scholar 

  61. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2), 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052

    Article  ADS  Google Scholar 

  62. A. Sayah et al., Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J Electroanal Chem 818, 26–34 (2018). https://doi.org/10.1016/j.jelechem.2018.04.016

    Article  Google Scholar 

  63. L. Guardia et al., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon NY 49(5), 1653–1662 (2011). https://doi.org/10.1016/j.carbon.2010.12.049

    Article  Google Scholar 

Download references

Acknowledgements

This study has been funded by the Yıldız Technical University Office of Scientific Research Project No: FYL-2018-3393. The authors would like to express their gratitude to the Yıldız Technical University Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuray Dericiler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dericiler, K., Alishah, H.M., Bozar, S. et al. A novel method for graphene synthesis via electrochemical process and its utilization in organic photovoltaic devices. Appl. Phys. A 126, 904 (2020). https://doi.org/10.1007/s00339-020-04091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04091-3

Keywords

Navigation