Skip to main content
Log in

Local structure and electrical switching in Al20Te75X5 (X = Si, Ge, As, Sb) glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Al20Te75X5 (X = Si, Ge, As, Sb) glasses prepared by the melt quenching method exhibit threshold switching. Local structure of these glasses studied by 27Al MAS-NMR measurements reveals that Al is in four-, five- and sixfold coordination. For Al to be in higher coordination states, Te transfers its lone pair electrons. Due to the higher coordinated Al and Te, the cross-linking in the network increases. The increased cross-linking and rigidity constraint the structural reorganization required for memory switching, resulting in the observed threshold switching. Interestingly, glass transition and crystallization temperatures were found to be high for Al20Te75Si5 glass and low for Al20Te75Sb5 glass. Also, the bond energy of Si–Te is higher than the bond energy of Sb–Te. Correspondingly, the threshold voltage is high for Al20Te75Si5 glass and low for Al20Te75Sb5 glass. The [6]Al site peak shows a split which may offer greater insight into the structure of these glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.A. Chechetkina, Photostructural changes and electrical switching in amorphous chalcogenides: bond waves in thin films. Nat. Sci. 10, 70–80 (2018)

    Google Scholar 

  2. S. Asokan, K.P. Lakshmi, Electrical switching and other properties of chalcogenide glasses. J. Indian Inst. Sci. 91, 319–330 (2011)

    Google Scholar 

  3. S. Hudgens, Progress in understanding the Ovshinsky effect: threshold switching in chalcogenide amorphous semiconductors. Phys. Stat. Solidi (b) 249, 1951–1955 (2012)

    Article  ADS  Google Scholar 

  4. N.A. Bogoslovskiy, K.D. Tsendin, Physics of switching and memory effects in chalcogenide glassy semiconductors. Semiconductors 46, 559–590 (2012)

    Article  ADS  Google Scholar 

  5. E.M. Vinod, K. Ramesh, R. Ganesan, K.S. Sangunni, Direct hexagonal transition of amorphous (Ge2Sb2Te5)0.9Se0.1 thin films. Appl. Phys. Lett. 104, 063505 (2014)

    Article  ADS  Google Scholar 

  6. P. Pumlianmunga, K. Ramesh, Electrical switching, local structure and thermal crystallization in Al–Te glasses. Mater. Res. Bull. 86, 88–94 (2017)

    Article  Google Scholar 

  7. P.T. Wilson, S. Chahal, M.M. Kumar, K. Ramesh, 27Al MAS NMR investigations on Al23Te77 glass: observation of 5-coordinated Al and its influence on electrical switching. Solid State Commun. 293, 53–57 (2019)

    Article  ADS  Google Scholar 

  8. P. Pumlianmunga, K. Ramesh, Electrical switching in Sb doped Al23Te77 glass. J. Phys. Chem. Solids 107, 68–74 (2017)

    Article  ADS  Google Scholar 

  9. P. Pumlianmunga, K. Ramesh, Electrical switching and aluminium speciation in Al–As–Te glasses. J. Non-Cryst. Solids 452, 253–258 (2016)

    Article  ADS  Google Scholar 

  10. S. Murugavel, S. Asokan, Local structure and electrical switching in chalcogenide glasses. Phys. Rev. B 58, 3022–3025 (1998)

    Article  ADS  Google Scholar 

  11. S. Murugavel, S. Asokan, Composition dependence of electrical properties of Al–Te glasses. J. Non-Cryst. Solids 249, 145–149 (1999)

    Article  ADS  Google Scholar 

  12. S. Murugavel, S. Asokan, Composition tunable memory and threshold switching in Al20AsxTe80−x semiconducting glasses. J. Mater. Res. 13, 2982–2987 (1998)

    Article  ADS  Google Scholar 

  13. J.Z. Liu, P.C. Taylor, The formal valence shell model for structure of amorphous semiconductors. J. Non-Cryst. Solids 114, 25–30 (1989)

    Article  ADS  Google Scholar 

  14. J. Hautala, P.C. Taylor, A review of optical properties of metal chalcogenide glasses. J. Non-Cryst. Solids 141, 24–34 (1992)

    Article  ADS  Google Scholar 

  15. K. Ramesh, S. Asokan, E.S.R. Gopal, Chemical ordering and fragility minimum in Cu–As–Se glasses. J. Non-Cryst. Solids 352, 2905–2912 (2006)

    Article  ADS  Google Scholar 

  16. R. Karuppannan, V. Ganesan, S. Asokan, Electrical switching in Cu–As–Se glasses. Int. J. Appl. Glass Sci. 2, 52–62 (2011)

    Article  Google Scholar 

  17. S. Prakash, S. Asokan, D.B. Ghare, Electrical switching behaviour of semiconducting aluminium telluride glasses. Semicond. Sci. Technol. 9, 1484 (1994)

    Article  ADS  Google Scholar 

  18. R. Chbeir, M. Bauchy, M. Micoulout, P. Boolchand, Evidence for a correlation of melt fragility index with topological phases of multicomponent glasses. Front. Mater. 6, 173 (2019)

    Article  ADS  Google Scholar 

  19. S. Chakravarty, R. Chbeir, P. Chen, M. Micoulaut, P. Boolchand, Correlating melt dynamics and configurational entropy change with topological phases of AsxS100−x glasses and the crucial role of melt/glass homogenization. Front. Mater. 6, 166 (2019)

    Article  ADS  Google Scholar 

  20. P. Lucas, Relative influence of topology dimensionality and stoichiometry toward the properties of covalent network glasses. Front. Mater. 6, 180 (2019)

    Article  ADS  Google Scholar 

  21. C.A. Angell, Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995)

    Article  ADS  Google Scholar 

  22. K. Chebli, J.M. Saitera, J. Grenet, A. Hamou, G. Saffarini, Strong fragile glass forming liquid concept applied to GeTe chalcogenide glasses. Physica B 304, 228–236 (2001)

    Article  ADS  Google Scholar 

  23. M. Choi, K. Matsunaga, F. Oba, I. Tanaka, 27Al NMR chemical shifts in oxide crystals: a first-principles study. J. Phys. Chem. C 113, 3869–3873 (2009)

    Article  Google Scholar 

  24. M. Xia, K. Ding, F. Rao, X. Li, W. Liangcai, Z. Song, Aluminum-centered tetrahedron-octahedron transition in advancing Al–Sb–Te phase change properties. Sci. Rep. 5, 8548 (2015)

    Article  Google Scholar 

  25. X. Zhou, W. Liangcai, Z. Song, F. Rao, K. Ren, C. Peng, S. Song, B. Liu, X. Ling, S. Feng, Phase transition characteristics of Al–Sb phase change materials for phase change memory application. Appl. Phys. Lett. 103, 072114 (2013)

    Article  ADS  Google Scholar 

  26. T. Gao, J. Feng, H. Ma, X. Zhu, Z. Ma, AlxTe1−x selector with high ovonic threshold switching performance for memory crossbar arrays. Appl. Phys. Lett. 114, 163505 (2019)

    Article  ADS  Google Scholar 

  27. K. Ren, F. Rao, Z. Song, S. Lv, Y. Cheng, L. Wu, C. Peng, X. Zhou, M. Xia, B. Liu, S. Feng, Pseudobinary Al2Te3–Sb2Te3 material for high speed phase change memory application. Appl. Phys. Lett. 100, 052105 (2012)

    Article  ADS  Google Scholar 

  28. S. Xin, J. Liu, P.S. Salmon, Structure of Cu–As–Se glasses investigated by neutron diffraction with copper isotope substitution. Phys. Rev. B 78, 064207 (2008)

    Article  ADS  Google Scholar 

  29. P.S. Salmon, J. Liu, The coordination environment of Ag and Cu in ternary chalcogenide glasses 205–207. J. Non-Cryst. Solids 205–207, Part 1, 172–175 (1996)

    Article  ADS  Google Scholar 

  30. L. Zhang, S. Song, W. Xi, L. Li, Y. He, H. Lin, Z. Song, Local structure of AlSb2Te3 thin film studied by experimental and theoretical methods. J. Phys. Chem. Solids 83, 52–57 (2015)

    Article  ADS  Google Scholar 

  31. V. Sousa, Chalcogenide materials and their application to non-volatile memories. Microelectron. Eng. 88, 807–813 (2011)

    Article  Google Scholar 

  32. Z.U. Borisova, Glassy Semiconductors (Plenum Press, New York, 1981)

    Book  Google Scholar 

  33. K. Nakashima, K.C. Kao, Conducting filament and switching phenomena in chalcogenide semiconductors. J. Non-Cryst. Solids 33, 189–204 (1979)

    Article  ADS  Google Scholar 

  34. J. Schneider, M.A. Cincotto, H. Panepucci, 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem. Concr. Res. 31, 993–1001 (2001)

    Article  Google Scholar 

  35. M.D. Andersen, H.J. Jakobsen, J. Skibsted, A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 36, 3–17 (2006)

    Article  Google Scholar 

  36. A. Hruby, Evaluation of glass forming tendency by means of DTA. Czech J. Phys. 22, 1187–1193 (1972)

    Article  ADS  Google Scholar 

  37. M. Anbarasu, K.K. Singh, S. Asokan, The presence of thermally reversing window in Al–Te–Si glasses revealed by alternating differential scanning calorimetry and electrical switching studies. J. Non-Cryst. Solids 354, 3369–3374 (2008)

    Article  ADS  Google Scholar 

  38. W.M. Haynes, CRC Handbook of Chemistry and Physics, 96th edn. (CRC Press, Boca Raton, 2015)

    Google Scholar 

  39. J. Bicerano, S.R. Ovshinsky, Chemical bond approach to glass structure. J. Non-Cryst. Solids 75, 169–175 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology (DST) through the Project EEQ/2017/000538 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, P.T., Ramanna, R., Chahal, S. et al. Local structure and electrical switching in Al20Te75X5 (X = Si, Ge, As, Sb) glasses. Appl. Phys. A 126, 289 (2020). https://doi.org/10.1007/s00339-020-03471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03471-z

Keywords

Navigation