Skip to main content
Log in

Tunable spoof surface plasmon polariton transmission line based on ferroelectric thick film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Spoof surface plasmon polaritons (SSPPs) provide a high field confinement in the sub-wavelength scale and low transmission loss in the propagation, which are widely used in microwave functional devices. In this paper, we first propose a tunable SSPP transmission line (TL) based on ferroelectric thick film. The ferroelectric thick film associated with the SSPP planar waveguide can provide an electrically tunable transmission phase. Two electric-field-coupled inductive–capacitive (ELC) resonators are added in the configuration to inspire the coupling between ELC resonant modes and SSPPs, enabling the tunable TL to work in the frequency-selective transmission passband. It is demonstrated that the SSPP mode can be designed in higher or lower confinement to modulate the electromagnetic field strength inside the ferroelectric thick film. This property promotes a balanced design between low transmission loss and large phase change for tunable TL. As a result, this study provides an alternative route to design tunable SSPP devices based on ferroelectric thick film, which may open up new applications in tunable microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereuxand, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003)

    ADS  Google Scholar 

  2. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  3. Z.L. Wang, A review on research progress in surface plasmons. Prog Phys 29, 287 (2009)

    Google Scholar 

  4. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)

    ADS  Google Scholar 

  5. F. Wei, Z. Liu, Plasmonic structured illumination microscopy. Nano Lett. 10, 2531 (2010)

    ADS  Google Scholar 

  6. Z. Han, S.I. Bozhevolnyi, Plasmon-induced transparency with detuned ultracompact Fabry–Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011)

    ADS  Google Scholar 

  7. J.Q. Shen, Electromagnetically-induced-transparency plasmonics: quantum-interference-assisted tunable surface-plasmonpolariton resonance and excitation. Phys. Rev. A 90, 023814 (2014)

    ADS  Google Scholar 

  8. Z. Zhang, L. Zhang, H. Li, H. Chen, Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl. Phys. Lett. 104, 231114 (2014)

    ADS  Google Scholar 

  9. O. Krupin, H. Asiri, C. Wang, R.N. Tait, P. Berini, Biosensing using straight long-range surface plasmon waveguides. Opt. Exp. 21, 698 (2013)

    ADS  Google Scholar 

  10. K. Gazzaz, P. Berini, Theoretical biosensing performance of surface plasmon polariton Bragg gratings. Appl. Opt. 54, 1673 (2015)

    ADS  Google Scholar 

  11. M.A. Awal, Z. Ahmed, M.A. Talukder, An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry. J. Appl. Phys. 117, 063109 (2015)

    ADS  Google Scholar 

  12. J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305, 847 (2004)

    ADS  Google Scholar 

  13. X.P. Shen, T.J. Cui, J.D. Francisco, V. Garcia, Conformal surface plasmons propagating on ultrathin and flexible film. Proc. Natl. Acad. Sci. 110, 40 (2013)

    ADS  Google Scholar 

  14. T.J. Cui, Microwave metamaterials from passive to digital and programmable controls of electromagnetic waves. J. Opt. 19, 084004 (2017)

    ADS  Google Scholar 

  15. W.X. Zhang, G.Q. Zhu, L.G. Sun, T.J. Cui, Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Appl. Phys. Lett. 106, 021104 (2015)

    ADS  Google Scholar 

  16. X.P. Shen, T.J. Cui, Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett. 102, 211909 (2013)

    ADS  Google Scholar 

  17. J.J. Wu, D.J. Hou, K.X. Liu, L.F. Shen, C.A. Tsai, C.J. Wu, D. Tsai, T.J. Yang, Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons. Opt. Express 22, 26777 (2014)

    ADS  Google Scholar 

  18. H.C. Zhang, T.J. Cui, Q. Zhang, Y. Fan, X. Fu, Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2, 1333 (2015)

    Google Scholar 

  19. X. Gao, L. Zhou, Z. Liao, H.F. Ma, T.J. Cui, An ultra-wideband surface plasmonic filter in microwave frequency. Appl. Phys. Lett. 104, 191603 (2014)

    ADS  Google Scholar 

  20. X. Gao, L. Zhou, X.Y. Yu, W.P. Cao, H.O. Li, H.F. Ma, T.J. Cui, Ultra-wideband surface plasmonic Y-splitter. Opt. Express 23, 23270 (2015)

    ADS  Google Scholar 

  21. J.Y. Yin, J. Ren, H.C. Zhang, B.C. Pan, T.J. Cui, Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci. Rep. 5, 8165 (2015)

    ADS  Google Scholar 

  22. B.C. Pan, J. Zhao, Z. Liao, H.C. Zhang, T.J. Cui, Multi-layer topological transmissions of spoof surface plasmon polaritons. Sci. Rep. 6, 22702 (2016)

    ADS  Google Scholar 

  23. J.J. Wu, D.J. Hou, T.J. Yang, I.J. Hsieh, Y.H. Kao, H.E. Lin, Bandpass filter based on low frequency spoof surface plasmon polaritons. Electron. Lett. 48, 269 (2012)

    Google Scholar 

  24. Y. Han, Y. Li, H. Ma, J. Wang, D. Feng, S. Qu, J Zhang (2017) Multibeam antennas based on spoof surface plasmon polaritons mode coupling. IEEE Trans. Antennas Propag. 65, 1187 (2017)

    ADS  MATH  Google Scholar 

  25. M.D. Domenico, D.A. Johnson, R.H. Pantell, Ferroelectric harmonic generator and the large-signal microwave characteristics of a ferroelectric ceramic. J. Appl. Phys. 33, 1697 (1962)

    ADS  Google Scholar 

  26. D. Kuylenstierna, A. Vorobiev, P. Linner, S. Gevorgian, Composite right/left handed transmission line phase shifter using ferroelectric varactors. IEEE Microw. Wirel. Compon. Lett. 16, 167 (2006)

    Google Scholar 

  27. A. Mahmud, T.S. Kalkur, A. Jamil, N. Cramer, A 1-GHz active phase shifter with a ferroelectric varactor. IEEE Microw. Wirel. Compon. Lett. 16, 261 (2006)

    Google Scholar 

  28. M. Zhu, Z. Du, L. Jing, A. Tok, E. Teo, Optical and electro-optic anisotropy of epitaxial PZT thin film. Appl. Phys. Lett. 107, 031907 (2015)

    ADS  Google Scholar 

  29. Q. Zhang, J. Zhai, L. Kong, X. Yao, Investigation of ferroelectric phase transition for barium strontium titanate ceramics by in situ Raman scattering. J. Appl. Phys. 112, 124112 (2012)

    ADS  Google Scholar 

  30. P. Bao, T.J. Jackson, X. Wang, M.J. Lancaster, Barium strontium titanate thin film varactors for room-temperature microwave device applications. J. Phys. D 41, 063001 (2008)

    ADS  Google Scholar 

  31. B. Su, J.E. Holmes, C. Meggs, T.W. Button, Dielectric and microwave properties of barium strontium titanate (BST) thick film on alumina substrates. J. Eur. Ceram. Soc. 23, 2699 (2003)

    Google Scholar 

  32. V.K. Palukuru, J. Peräntie, M. Komulainen, M. Tick, H. Jantunen, Tunable microwave devices using low-sintering-temperature screen-printed barium strontium titanate (BST) thick film. J. Eur. Ceram. Soc. 30, 389 (2010)

    Google Scholar 

  33. X. Zhou, M. Sazegar, F. Stemme, J. Haußelt, R. Jakoby, J.R. Binder, Correlation of the microstructure and microwave properties of Ba0.6Sr0.4TiO3 thick-film. J. Eur. Ceram. Soc. 32, 4311 (2012)

    Google Scholar 

  34. A. Friederich, C. Kohler, M. Nikfalazar, A. Wiens, M. Sazegar, R. Jakoby, W. Bauer, J.R. Binder, Microstructure and microwave properties of inkjet printed barium strontium titanate thick-film for tunable microwave devices. J. Eur. Ceram. Soc. 34, 2925 (2014)

    Google Scholar 

  35. Y.L. Bian, C. Wu, H.Q. Li, J.W. Zhai, A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film. Appl. Phys. Lett. 104, 042906 (2014)

    ADS  Google Scholar 

  36. B.W. Dong, H. Ma, J. Wang, P. Shi, J. Li, L. Zhu, J. Lou, M. Feng, S.B. Qu, A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film. J. Phys. D 52, 045301 (2018)

    ADS  Google Scholar 

  37. H.C. Zhang, Q. Zhang, J.F. Liu, W.X. Tang, Y.F. Fan, T.J. Cui, Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Sci. Rep. 6, 23396 (2016)

    ADS  Google Scholar 

  38. H.F. Ma, X.P. Shen, Q. Cheng, W.X. Jiang, T.J. Cui, Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 1, 146 (2014)

    ADS  Google Scholar 

  39. S. Liu, T.J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. Tang, C. Ouyang, X. Zhou, H. Yuan, H. Ma, W. Jiang, J. Han, W. Zhang, Q. Cheng, Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 5, e16076 (2016)

    Google Scholar 

  40. B. Zhou, H. Li, X. Zou, T.J. Cui, Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index materials. Prog. Electromagn. Res. 120, 235 (2011)

    Google Scholar 

  41. B.C. Pan, Z. Liao, T.J. Cui, Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt Exp. 22, 13940 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support from the National Natural Science Foundation of China (Grant nos. 61671467 and 61671466).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Hua Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, J., Wang, J., Ma, H. et al. Tunable spoof surface plasmon polariton transmission line based on ferroelectric thick film. Appl. Phys. A 125, 737 (2019). https://doi.org/10.1007/s00339-019-3035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3035-5

Navigation