Skip to main content
Log in

EDTA-grafted Cu2+-doped superparamagnetic nanoparticles: facile novel synthesis and their structural and magnetic characterizations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, ethylenediaminetetraacetic acid (EDTA) surface grafting and copper(II) doping of superparamagnetic iron oxide nanoparticles (EDTA/Cu-SPIONs) were simultaneously performed during their formation by a simple electrochemical procedure. This method was achieved by applying a constant current of 10 mA/cm2 to the two-electrode electrochemical cell containing aqueous electrolyte of iron(II) chloride (0.75 g), iron(III) nitrate (2 g), copper(II)chloride (0.5 g) and 0.2 g EDTA. The prepared EDTA/Cu-SPION samples are specified by TEM, VSM, IR, EDS, FE-SEM, TGA and XRD analyses. The magnetite (i.e., Fe3O4) crystal structure (verified by the XRD results), 10 nm particle size (proved by TEM observations), 11 wt% doped copper (revealed though EDS data), and 10 wt% surface coat (calculated from the thermogravimetric data) were specified for the deposited SPION powder. IR data showed all the absorptions related to the chemical bonds (i.e., C–C, C–N, N–H, C–O) of EDTA and proved the EDTA-grafted configuration of the deposited SPIONs. VSM measurements exhibited the superparamagnetic behavior of the EDTA-grafted EDTA/Cu-SPION sample, where relative high saturation magnetization (Ms = 31.38 emu g−1), low remanence (Mr = 0.31 emu g−1) and negligible coercivity (Hci = 6.6 Oe) were observed. Based on the results, the developed route is introduced as a facile procedure for the preparation of EDTA-grafted metal ion-doped magnetite fine particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Li, J. Wei, K.E. Aifantis, Y. Fan, Q. Feng, F.Z. Cui, F. Watari, J. Biomed. Mater. Res. 104A, 1285–1296 (2016)

    Google Scholar 

  2. R.K. Sharma, S. Dutta, S. Sharma, R. Zboril, R.S. Varma, M.B. Gawande, Green Chem. 18, 3184–3209 (2016)

    Google Scholar 

  3. L.S. Arias, J.P. Pessan, A.P. Miranda Vieira, T.M.T. de Lima, A.C.B. Delbem, D.R. Monteiro, Antibiotics 7, 46–77 (2018)

    Google Scholar 

  4. Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, Ceram. Int. 42, 9–34 (2016)

    Google Scholar 

  5. N.V.S. Vallabani, S. Singh, 3 Biotech 8, 279–301 (2018)

    Google Scholar 

  6. W. Li, J. Zaloga, Y. Ding, Y. Liu, C. Janko, M. Pischetsrieder, C. Alexiou, A.R. Boccaccini, Sci. Rep. 6, 23140 (2016)

    ADS  Google Scholar 

  7. G. Muzio, M. Miola, S. Ferraris, M. Maggiora, E. Bertone, M.P. Puccinelli, M. Ricci, E. Borroni, R.A. Canuto, E. Verné, A. Follenzi, Mater. Sci. Eng., C 76, 439–447 (2017)

    Google Scholar 

  8. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, Curr. Nanosci. 15, 169–177 (2019)

    ADS  Google Scholar 

  9. Y. Ha, S. Ko, I. Kim, Y. Huang, K. Mohanty, C. Huh, J.A. Maynard, A.C.S. Appl, Nano Mater. 1, 512–521 (2018)

    Google Scholar 

  10. A.R. Nochehdehi, S. Thomas, M. Sadri, S.S.S. Afghahi, S.M.M. Hadavi, J. Nanomed. Nanotechnol. 8, 423–455 (2017)

    Google Scholar 

  11. S. Sabale, P. Kandesar, V. Jadhava, R. Komorekb, R.K. Motkuri, X.Y. Yu, Biomater. Sci. 5, 2212–2225 (2017)

    Google Scholar 

  12. S. Lin, M. Xu, W. Zhang, X. Hu, K. Lin, J. Hazard. Mater. 335, 547–555 (2017)

    Google Scholar 

  13. C. Tamez, R. Hernandez, J.G. Parsons, Microchem. J. 125, 97–104 (2016)

    Google Scholar 

  14. S. Lin, C. Lian, M. Xu, W. Zhang, L. Liu, K. Lin, Appl. Surf. Sci. 422, 675–681 (2017)

    ADS  Google Scholar 

  15. M. Aghazadeh, M.R. Ganjali, Ceram. Int. 44, 520–529 (2018)

    Google Scholar 

  16. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, A. Behzad, J. Mater. Sci.: Mater. Electron. 28, 18121–18129 (2017)

    Google Scholar 

  17. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, Mater. Lett. 209, 450–454 (2017)

    Google Scholar 

  18. M. Aghazadeh, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 29, 2291–2300 (2018)

    Google Scholar 

  19. X. Liu, S. Lu, D. Liu, L. Zhang, L. Zhang, X. Yu, R. Liu, Brain Res. 1707, 141–153 (2019)

    Google Scholar 

  20. V. Gómez-Vallejo, M. Puigivila, S. Plaza-García, B. Szczupak, R. Piñol, J.L. Murillo, V. Sorribas, G. Lou, S. Veintemillas, P. Ramos-Cabrerg, J. Llop, A. Millán, Nanoscale 10, 14153–14164 (2018)

    Google Scholar 

  21. A. Espinosa, R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, C. Wilhelm, ACS Nano 10, 2436–2446 (2016)

    Google Scholar 

  22. J. Mosayebi, M. Kiyasatfar, S. Laurent, Adv. Healthc. Mater. 6, 1700306 (2017)

    Google Scholar 

  23. S. Ullah, K. Seidel, S. Türkkan, D.P. Warwas, T. Dubich, M. Rohde, H. Hauser, P. Behrens, A. Kirschning, M. Köster, D. Wirth, J. Control. Release 294, 327–336 (2019)

    Google Scholar 

  24. M. Magro, D. Baratella, E. Bonaiuto, J.A. Roger, G. Chemello, S. Pasquaroli, L. Mancini, I. Olivotto, G. Zoppellaro, J. Ugolotti, C. Aparicio, A.P. Fifi, G. Cozza, G. Miotto, G. Radaelli, D. Bertotto, R. Zboril, F. Vianello, Biomacromol 20, 1375–1384 (2019)

    Google Scholar 

  25. L.B. Mello, L.C. Varanda, F.A. Sigoli, I.O. Mazali, J. Alloy. Compd. 779, 698–705 (2019)

    Google Scholar 

  26. J. Wan, G. Tang, Y. Qian, Appl. Phys. A 86, 261–264 (2007)

    ADS  Google Scholar 

  27. W. Glasgow, B. Fellows, B. Qi, T. Darroudi, O.T. Mefford, Particuology 26, 47–53 (2016)

    Google Scholar 

  28. N.J. Orsini, B. Babić-Stojić, V. Spasojević, M.P. Calatayud, G.F. Goya, J. Magn. Magn. Mater. 449, 286–296 (2018)

    ADS  Google Scholar 

  29. S. Phumying, S. Labuayai, C. Thomas, V. Amornkitbamrung, E. Swatsitang, S. Maensiri, Appl. Phys. A 111, 1187–1193 (2013)

    ADS  Google Scholar 

  30. D.A. Brewster, D.J. Sarappa, K.E. Knowles, Polyhedron 157, 54–62 (2019)

    Google Scholar 

  31. K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Biotechnol. Adv. 33, 1162–11761 (2015)

    Google Scholar 

  32. W. Xie, Z. Guo, F. Gao, Q. Gao, D. Wang, B. Liaw, Q. Cai, X. Sun, X. Wang, L. Zhao, Theranostics 8, 3284–3307 (2018)

    Google Scholar 

  33. M. Peng, H. Li, Z. Luo, J. Kong, Y. Wan, L. Zheng, Q. Zhang, H. Niu, A. Vermorken, W. Van de Ven, C. Chen, X. Zhang, F. Li, L. Guo, Y. Cui, Nanoscale 7, 11155–11162 (2015)

    ADS  Google Scholar 

  34. I. Karimzadeh, M. Aghazadeh, M.R. Ganjali, P. Norouzi, T. Doroudi, P.H. Kolivand, Mater. Lett. 189, 290–294 (2017)

    Google Scholar 

  35. S. İşçi, Y. İşçi, M.G. Bekaroğlu, Appl. Phys. A 123, 534 (2017)

    ADS  Google Scholar 

  36. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, Mater. Lett. 228, 137–140 (2018)

    Google Scholar 

  37. I. Karimzadeh, M. Aghazadeh, M.R. Ganjali, T. Dourudi, Curr. Nanosci. 13, 167–174 (2017)

    ADS  Google Scholar 

  38. I. Karimzadeh, H.R. Dizaji, M. Aghazadeh, J. Magn. Magn. Mater. 416, 81–88 (2016)

    ADS  Google Scholar 

  39. M. Aghazadeh, I. Karimzadeh, Curr. Nanosci. 14, 42–49 (2018)

    Google Scholar 

  40. E. Shah, P. Upadhyay, M. Singh, M.S. Mansuri, R. Begum, N. Shethd, H.P. Soni, New J. Chem. 40, 9507–9519 (2016)

    Google Scholar 

  41. A.G. Magdalena, I.M.B. Silva, R.F.C. Marques, A.R.F. Pipi, M. Jafelicci, J. Phys. Chem. Solids 113, 5–10 (2018)

    ADS  Google Scholar 

  42. M. Aghazadeh, A.N. Golikand, M. Ghaemi, Int. J. Hydrogen Energy 36, 8674–8679 (2011)

    Google Scholar 

  43. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 28, 13532–13539 (2018)

    Google Scholar 

  44. M. Aghazadeh, J. Mater. Sci.: Mater. Electron. 28, 3108–3117 (2017)

    Google Scholar 

  45. M. Aghazadeh, I. Karimzadeh, A. Ahmadi, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 29, 14567–14573 (2018)

    Google Scholar 

  46. M. Aghazadeh, I. Karimzadeh, A. Ahmadi, M.R. Ganjali, P. Norouzi, J. Mater. Sci.: Mater. Electron. 29, 14378–14386 (2018)

    Google Scholar 

  47. M. Aghazadeh, Anal. Bioanal. Electrochem. 11, 211–266 (2019)

    Google Scholar 

  48. M. Aghazadeh, J. Mater. Sci.: Mater. Electron. 28, 18755–18764 (2017)

    Google Scholar 

  49. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, J. Electron. Mater. 47, 3026–3036 (2018)

    Google Scholar 

  50. M. Aghazadeh, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 29, 4981–4991 (2018)

    Google Scholar 

  51. M. Aghazadeh, Mater. Lett. 211, 225–229 (2018)

    Google Scholar 

  52. Y. Huang, A.A. Keller, Water Res. 80, 159–168 (2015)

    Google Scholar 

  53. P.R. Desai, N.J. Jain, R.K. Sharma, P. Bahadur, Colloid Surf. A 178, 57–69 (2001)

    Google Scholar 

  54. M. Aghazadeh, M.R. Ganjali, J. Mater. Sci. 53, 295–308 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Aghazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, M., Karimzadeh, I., Ganjali, M.R. et al. EDTA-grafted Cu2+-doped superparamagnetic nanoparticles: facile novel synthesis and their structural and magnetic characterizations. Appl. Phys. A 125, 506 (2019). https://doi.org/10.1007/s00339-019-2803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2803-6

Navigation