Skip to main content
Log in

Transport properties of 3D printed polymer nanocomposites for potential thermoelectric applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the transport and thermoelectric properties of three-dimensional printed samples, which are composed by polymer nanocomposites. For the purposes of the current study, the well-known fused deposition modeling three-dimensional printing method was employed. Commercially available PLA-based nanocomposite filaments, such as PLA–graphite and PLA–graphene, are used to produce mm-scale samples. Electrical conductivity and Seebeck coefficient were investigated, as a function of temperature. PLA–graphene samples exhibit effective thermoelectric performance, comparable to the other state-of-the art polymer nanocomposites, indicating that commercial polymer nanocomposites can be promising candidates for 3D printed thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Ziabari, D. Zebarjadi, Vashaee, A. Shakouri, Rep. Prog. Phys. 79, 095901 (2016)

    ADS  Google Scholar 

  2. X. Shi, L. Chen, C. Uher, Int. Mater. Rev. 61, 379 (2016)

    Google Scholar 

  3. K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, J. Am. Ceram. Soc. 96, 1 (2013)

    Google Scholar 

  4. J.H. Bahk, H. Fang, K. Yazawa, A. Shakouri, J. Mater. Chem. C 3, 10362 (2015)

    Google Scholar 

  5. J. Gonçalves, P. Lima, B. Krause, P. Pötschke, U. Lafont, J. Gomes, C. Abreu, M. Paiva, J. Covas, J. Gonçalves, P. Lima, B. Krause, P. Pötschke, U. Lafont, J.R. Gomes, C.S. Abreu, M.C. Paiva, J.A. Covas, Polymers 10, 925 (2018)

    Google Scholar 

  6. Q. Poudel, Y. Hao, Y. Ma, A. Lan, B. Minnich, X. Yu, D. Yan, A. Wang, D. Muto, X. Vashaee, J. Chen, M.S. Liu, G. Dresselhaus, Chen, Z. Ren, Science 320, 634 (2008)

    ADS  Google Scholar 

  7. T.P. Hogan, A. Downey, J. Short, J. D’Angelo, C.I. Wu, E. Quarez, J. Androulakis, P.F.P. Poudeu, J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, S.D. Mahanti, E.J. Timm, H. Schock, F. Ren, J. Johnson, E.D. Case, J. Electron. Mater. 36, 704 (2007)

    ADS  Google Scholar 

  8. Y. He, T. Zhang, X. Shi, S.H. Wei, L. Chen, NPG Asia Mater. 7, 210 (2015)

    Google Scholar 

  9. P.F.P. Poudeu, A. Guéguen, C.I. Wu, T. Hogan, M.G. Kanatzidis, Chem. Mater. 22, 1046 (2010)

    Google Scholar 

  10. D.K. Bhat, S.U. Shenoy, J. Phys. Chem. C 121, 7123 (2017)

    Google Scholar 

  11. H.Q. Yang, L. Miao, C.Y. Liu, C. Li, S. Honda, Y. Iwamoto, R. Huang, S. Tanemura, ACS Appl. Mater. Interfaces 7, 14263 (2015)

    Google Scholar 

  12. Z. Li, N. Miao, J. Zhou, Z. Sun, Z. Liu, H. Xu, Nano Energy 43, 285 (2018)

    Google Scholar 

  13. J.E. Rodríguez, L.C. Moreno, Mater. Lett. 65, 46 (2011)

    Google Scholar 

  14. Y. Wang, K. Cai, X. Yao, ACS Appl. Mater. Interfaces 3, 1163 (2011)

    Google Scholar 

  15. L. Wang, J. Schindler, J.A. Thomas, C.R. Kannewurf, M.G. Kanatzidis, Chem. Mater. 7, 1753 (1995)

    Google Scholar 

  16. K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, R.A. Segalman, Nano Lett. 10, 4664 (2010)

    ADS  Google Scholar 

  17. J. Sun, M.L. Yeh, B.J. Jung, B. Zhang, J. Feser, A. Majumdar, H.E. Katz, Macromolecules 43, 2897 (2010)

    ADS  Google Scholar 

  18. K. Zhang, M. Davis, J. Qiu, L. Hope-Weeks, S. Wang, Nanotechnology 23, 385701 (2012)

    ADS  Google Scholar 

  19. J. Xiang, L.T. Drzal, Polymer (UK) 53, 4202 (2012)

    Google Scholar 

  20. Y. Zhao, G.-S. Tang, Z.-Z. Yu, J.-S. Qi, Carbon N. Y. 50, 3064 (2012)

    Google Scholar 

  21. K. Zhang, Y. Zhang, S. Wang, Sci. Rep. 3, 3448 (2013)

    ADS  Google Scholar 

  22. A. Gebhardt, J.-S. Hötter, in Additive Manufacturing (Carl Hanser Verlag GmbH & Co. KG, München, 2016). https://doi.org/10.3139/9781569905838.fm (ISBN 978-1-4987-1477-8)

    Book  Google Scholar 

  23. J.P. Kruth, M.C. Leu, T. Nakagawa, CIRP Ann. 47, 525 (1998)

    Google Scholar 

  24. N. Guo, M.C. Leu, Front. Mech. Eng. 8, 215 (2013)

    Google Scholar 

  25. M. Ajioka, K. Enomoto, K. Suzuki, A. Yamaguchi, J. Environ. Polym. Degrad. 3, 225 (1995)

    Google Scholar 

  26. J. Lunt, Polym. Degrad. Stab. 59, 145 (1998)

    Google Scholar 

  27. J. Wang, H. Li, R. Liu, L. Li, Y.H. Lin, C.W. Nan, Compos. Sci. Technol. 157, 1 (2018)

    Google Scholar 

  28. M.A. Zhang, J. Kandadai, S. Cech, Roth, S.A. Curran, J. Phys. Chem. B 110, 12910 (2006)

    Google Scholar 

  29. F.A. dos Santos, M.I.B. Tavares, Polímeros 24, 561 (2014)

    Google Scholar 

  30. M. Maiza, M.T. Benaniba, G. Quintard, V. Massardier-Nageotte, Polimeros 25, 581 (2015)

    Google Scholar 

  31. V. Kanakaiah, M. Latha, B. Sravan, A. Palanisamy, J.V. Rani, J. Electrochem. Soc. 161, A1586 (2014)

    Google Scholar 

  32. A.K. Mishra, S. Ramaprabhu, AIP Adv. 1, 032152 (2011)

    ADS  Google Scholar 

  33. S. Sasi, A. Murali, S.V. Nair, A.S. Nair, K.R.V. Subramanian, J. Mater. Chem. A 3, 2717 (2015)

    Google Scholar 

  34. P. Karthika, Soft Nanosci. Lett. 2, 59 (2012)

    Google Scholar 

  35. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347 (2015)

    Google Scholar 

  36. P.N. Khanam, D. Ponnamma, M.A. AL-Madeed, in Graphene-Based Polymer Nanocomposites in Electronics, ed. by K. Sadasivuni, D. Ponnamma, J. Kim, S. Thomas (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-13875-6 (ISBN 978-3-319-13875-6)

    Chapter  Google Scholar 

  37. S. Doganay, C. Coskun, Kaynak, H.E. Unalan, Compos. Part B Eng. 99, 288 (2016)

    Google Scholar 

  38. M.A. Cuiffo, J. Snyder, A.M. Elliott, N. Romero, S. Kannan, G.P. Halada, Appl. Sci. 7, 579 (2017)

    Google Scholar 

  39. S. Chandra, S. Bag, P. Das, D. Bhattacharya, P. Pramanik, Chem. Phys. Lett. 519, 59 (2012)

    ADS  Google Scholar 

  40. J.P. Mofokeng, A.S. Luyt, T. Tábi, J. Kovács, J. Thermoplast. Compos. Mater. 25, 927 (2012)

    Google Scholar 

  41. J. Alam, M. Alam, M. Raja, Z. Abduljaleel, L.A. Dass, Int. J. Mol. Sci. 15, 19924 (2014)

    Google Scholar 

  42. G. Wu, L. Ma, Y. Wang, L. Liu, Y. Huang, Compos. Part A Appl. Sci. Manuf. 84, 1 (2016)

    Google Scholar 

  43. Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Compos. Part A Appl. Sci. Manuf. 41, 806 (2010)

    Google Scholar 

  44. S.-H. Su, Y. Huang, S. Qu, W. Liu, R. Liu, L. Li, Diam. Relat. Mater. 81, 161 (2018)

    ADS  Google Scholar 

  45. N. Wang, X. Zhang, X. Ma, J. Fang, Polym. Degrad. Stab. 93, 1044 (2008)

    Google Scholar 

  46. M.P. Arrieta, MdelM. Castro-López, E. Rayón, L.F. Barral-Losada, J.M. López-Vilariño, J. López, M.V. González-Rodríguez, J. Agric. Food Chem. 62, 10170 (2014)

    Google Scholar 

  47. A. Hussein, S. Sarkar, B. Kim, J. Mater. Sci. Technol. 32, 411 (2016)

    Google Scholar 

  48. R. Gao, N. Hu, Z. Yang, Q. Zhu, J. Chai, Y. Su, L. Zhang, Y. Zhang, Nanoscale Res. Lett. 8, 32 (2013)

    ADS  Google Scholar 

  49. T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Nanoscale 5, 52 (2013)

    ADS  Google Scholar 

  50. H. Wu, W. Zhao, H. Hu, G. Chen, J. Mater. Chem. 21, 8626 (2011)

    Google Scholar 

  51. G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C.Y. Ryu, P.M. Ajayan, J. Am. Chem. Soc. 125, 9258 (2003)

    Google Scholar 

  52. R.B. Valapa, G. Pugazhenthi, V. Katiyar, RSC Adv. 5, 28410 (2015)

    Google Scholar 

  53. X. Cao, A. Mohamed, S.H. Gordon, J.L. Willett, D.J. Sessa, Thermochim. Acta 406, 115 (2003)

    Google Scholar 

  54. A. Jalali, M.A. Huneault, S. Elkoun, J. Mater. Sci. 51, 7768 (2016)

    ADS  Google Scholar 

  55. K. Gnanasekaran, T. Heijmans, S. van Bennekom, H. Woldhuis, S. Wijnia, G. de With, H. Friedrich, Appl. Mater. Today 9, 21 (2017)

    Google Scholar 

  56. C. Hu, Z. Li, Y. Wang, J. Gao, K. Dai, G. Zheng, C. Liu, C. Shen, H. Song, Z. Guo, J. Mater. Chem. C 5, 2318 (2017)

    Google Scholar 

  57. P. Manafi, I. Ghasemi, M. Karrabi, H. Azizi, P. Ehsaninamin, Soft Mater. 12, 433 (2014)

    Google Scholar 

  58. H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, J. Ouyang, Macromol. Rapid Commun. 39, 1700727 (2018)

    Google Scholar 

  59. S. Jia, D. Yu, Y. Zhu, Z. Wang, L. Chen, L. Fu, Polymers (Basel). 9, 528 (2017)

    Google Scholar 

  60. Y. Chen, X. Yao, Q. Gu, Z. Pan, J. Polym. Eng. 26, 377 (2013)

    Google Scholar 

  61. K. Li, S. Cai, Shen, S. Chen, Synth. Met. 197, 58 (2014)

    Google Scholar 

  62. Y. Du, S.Z. Shen, W. Yang, R. Donelson, K. Cai, P.S. Casey, Synth. Met. 161, 2688 (2012)

    Google Scholar 

  63. Y. Lu, Y. Song, F. Wang, Mater. Chem. Phys. 138, 238 (2013)

    Google Scholar 

  64. Y.Y. Aw, C.K. Yeoh, M.A. Idris, P.L. Teh, K.A. Hamzah, S.A. Sazali, Materials 11, 466 (2018)

    Google Scholar 

  65. X. Li, L. Liang, M. Yang, G. Chen, C.Y. Guo, Org. Electron. 38, 2000 (2016)

    Google Scholar 

  66. O.J. Botlhoko, J. Ramontja, S.S. Ray, RSC Adv. 7, 33751 (2017)

    Google Scholar 

  67. M. Karkri, Thermal conductivity of biocomposite materials, in Biopolymer Composites in Electronics, ed. by K.K Sadasivuni, J-J. Cabibihan, D. Ponnamma, M.A.S.A Al-Maadeed, J. Kim (Elsevier, Amsterdam, 2016). https://doi.org/10.1016/B978-0-12-809261-3.00004-8

    Chapter  Google Scholar 

  68. B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi, D. Chapron, V. Toniazzo, D. Ruch, Thermochim. Acta 552, 106 (2013)

    Google Scholar 

  69. Z. Antar, H. Noel, J.F. Feller, P. Glouannec, K. Elleuch, Mater. Sci. Forum 714, 115 (2012)

    Google Scholar 

  70. Y. Han, J. Purdue Undergrad. Res. 6, 89 (2016)

    Google Scholar 

  71. S.F. Costa, F.M. Duarte, J.A. Covas, Virtual Phys. Prototyp. 10, 35 (2015)

    Google Scholar 

  72. T.J. Quill, M.K. Smith, T. Zhou, M.G.S. Baioumy, J.P. Berenguer, B.A. Cola, K. Kalaitzidou, T.L. Bougher, Appl. Compos. Mater. 25, 1205 (2018)

    ADS  Google Scholar 

  73. P. Lamberti, G. Spinelli, P.P. Kuzhir, L. Guadagno, C. Naddeo, V. Romano, R. Kotsilkova, P. Angelova, V. Georgiev, AIP Conf. Proc. 1981, 020158 (2018)

    Google Scholar 

Download references

Acknowledgements

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-02784; acronym: POLYSHIELD). Z.V. would like to thank Prof. Theodora Kyratsi (Mechanical and Manufacturing Engineering Department, University of Cyprus), for her limitless help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Viskadourakis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viskadourakis, Z., Perrakis, G., Symeou, E. et al. Transport properties of 3D printed polymer nanocomposites for potential thermoelectric applications. Appl. Phys. A 125, 159 (2019). https://doi.org/10.1007/s00339-019-2469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2469-0

Navigation