Skip to main content
Log in

Global Stability Analysis of Some Nonlinear Delay Differential Equations in Population Dynamics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

By using the direct Lyapunov method and constructing appropriate Lyapunov functionals, we investigate the global stability for the following scalar delay differential equation with nonlinear term \(y'(t)=f(1-y(t), y(t-\tau ))-cy(t)\), where c is a positive constant and \(f: {\mathbb {R}}^2 \rightarrow {\mathbb {R}}\) is of class \({\mathbf {C}}^1\) and satisfies some additional requirements. This equation is a generalization of the SIS model proposed by Cooke (Rocky Mt J Math 7: 253–263, 1979). Criterions of global stability for the trivial and the positive equilibria of this delay equation are given. A special case of the function f depending only on the variable \(y(t-\tau )\) is also considered. Both general and special cases of this equation are often used in biomathematical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beddington, J.R., May, R.M.: Time delays are not necessarily destabilizing. Math. Biosci. 27, 109–117 (1975)

    Article  MATH  Google Scholar 

  • Berezansky, L., Braverman, E., Idels, L.: Mackey-Glass model of hematopoiesis with non-monotone feedback: stability, oscillation and control. Appl. Math. Comput. 11, 6268–6283 (2013)

    Article  MathSciNet  Google Scholar 

  • Bernard, S., Belair, J., Mackey, M.C.: Sufficient conditions for stability of linear differential equations with distributed delay. Discret. Contin. Dyn. Syst. Ser. B 1, 233–256 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Bernard, S., Crauste, F.: Optimal linear stability condition for scalar differential equations with distributed delay. Discret. Contin. Dyn. Syst. Ser. B arXiv:1405.7333 (2015)

  • Bodnar, M.: The nonnegativity of the solutions of delay differential equations. Appl. Math. Lett. 13, 91–95 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Bodnar, M., Foryś, U.: Three types of simple ODEs describing tumour growth. J. Biol. Syst. 15, 453–471 (2007)

    Article  MATH  Google Scholar 

  • Bodnar, M., Foryś, U., Piotrowska, M.J.: Logistic type equations with discrete delay and quasi-periodic suppression rate. Appl. Math. Lett. 26, 607–611 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Bodnar, M., Piotrowska, M.J., Foryś, U.: Existence and stability of oscillating solutions for a class of delay differential equations. Nonlinear Anal. Ser. B Real World Appl. 14, 1780–1794 (2013)

    Article  MATH  Google Scholar 

  • Bodnar, M., Piotrowska, M.J., Foryś, U.: Gompertz model with delays and treatment: mathematical analysis. Math. Biosci. Eng. 10, 551–563 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Cooke, K.L.: Stability analysis for a vector disease model. Rocky Mt. J. Math. 7, 253–263 (1979)

    Google Scholar 

  • Cooke, K., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–585 (1825)

    Article  Google Scholar 

  • Greenspan, H.P.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242 (1976)

    Article  MathSciNet  Google Scholar 

  • Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  • Huang, G., Takeuchi, Y.: Global analysis on delay epidemiological dynamic models with nonlinear incidence. J. Math. Biol. 63, 125–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, G., Takeuchi, Y., Miyazaki, R.: Stability conditions for a class of delay differential equations in single species dynamics. Discret. Contin. Dyn. Syst. B 17, 2451–2464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, G., Liu, A.: A note on global stability for a heroin epidemic model with distributed delay. Appl. Math. Lett. 26, 687–691 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Hutchinson, G.E.: Circular casual systems in ecology. Ann. NY. Acad. Sci. 50, 221–246 (1948)

    Article  Google Scholar 

  • Kowalczyk, R., Foryś, U.: Qualitative analysis on the initial value problem to the logistic equation with delay. Math. Comp. Model. 35, 1–13 (2002)

    Article  MATH  Google Scholar 

  • Korobeinikov, A.: Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68, 615–626 (2006)

    Article  MathSciNet  Google Scholar 

  • Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69, 1871–1886 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Korobeinikov, A.: Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate. Math. Med. Biol. 26, 225–239 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press Inc., Boston (1993)

    MATH  Google Scholar 

  • Mackey, M.C.: Some models in hemopoiesis: predictions and problems. In: Rotenberg, M. (ed.) Biomathematics and Cell Kinetics, pp. 23–38. Elsevier, North Holland (1981)

    Google Scholar 

  • Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  • Schuster, R., Schuster, H.: Reconstruction models for the Ehrlich Ascites tumor for the mouse. In: Arino, O., Axelrod, D., Kimmel, M. (eds.) Mathematical Population Dynamics, pp. 335–348. Wuertz, Winnipeg, Canada (1995)

  • Smith, H.: An Introduction to Delay Differential Equations with Applications to The Life Sciences. Springer, Berlin (2010)

    Google Scholar 

  • Verhulst, P.: Notice sur la loi que population suit dans son accroissement. Corr. Math. Et Phys. 10, 113–121 (1838)

    Google Scholar 

  • Wei, J., Fan, D.: Hopf bifurcation and analysis in a Mackey-Glass system. Int. J. Bifurc. Chaos 6, 2149–2157 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

G.H. was supported by the Fundamental Research Funds for the Central Universities (CUG130415) and National Natural Science Foundation of China (11201435). U.F. was supported by the Polish Ministry of Science and Higher Education, within the Iuventus Plus Grant: “Mathematical modelling of neoplastic processes” Grant No. IP2011 041971. U.F. would like to thank Dr. Marek Bodnar for very useful comments allowing to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Huang.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Liu, A. & Foryś, U. Global Stability Analysis of Some Nonlinear Delay Differential Equations in Population Dynamics. J Nonlinear Sci 26, 27–41 (2016). https://doi.org/10.1007/s00332-015-9267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9267-4

Keywords

Mathematics Subject Classification

Navigation