
A Predictive Model for Distinguishing Radiation Necrosis from 
Tumor Progression after Gamma Knife Radiosurgery based on 
Radiomic Features from MR Images

Zijian Zhang, BS1,2,*, Jinzhong Yang, PhD2,†,*, Angela Ho, BS2,3, Wen Jiang, MD4, Jennifer 
Logan, MD4, Xin Wang, PhD2, Paul D. Brown, MD4, Susan L. McGovern, MD4, Nandita 
Guha-Thakurta, MD5, Sherise D Ferguson, MD6, Xenia Fave, BS2, Lifei Zhang, PhD2, Dennis 
Mackin, PhD2, Laurence E. Court, PhD2, and Jing Li, MD, PhD4

1Central South University Xiangya Hospital, Changsha, Hunan, China

2Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX

3University of Houston, Houston, TX

4Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX

5Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, TX

6Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX

Abstract

Objectives—To develop a model using radiomic features extracted from MR images to 

distinguish radiation necrosis from tumor progression in brain metastases after Gamma knife 

radiosurgery.

Methods—We retrospectively identified 87 patients with pathologically confirmed necrosis (24 

lesions) or progression (73 lesions), and calculated 285 radiomic features from 4 MR sequences 

(T1, T1 post-contrast, T2, and fluid-attenuated inversion recovery) obtained at 2 follow-up time 

points per lesion per patient. Reproducibility of each feature between the two time points was 

calculated within each group to identify a subset of features with distinct reproducible values 

between two groups. Changes in radiomic features from one time point to the next (delta 

radiomics) were used to build a model to classify necrosis and progression lesions.

Results—A combination of 5 radiomic features from both T1 post-contrast and T2 MR images 

were found to be useful in distinguishing necrosis from progression lesions. Delta radiomic 

features with a RUSBoost ensemble classifier had an overall predictive accuracy of 73.2% and an 

area under the curve value of 0.73 in leave-one-out cross-validation.

Conclusions—Delta radiomic features extracted from MR images have potential for 

distinguishing radiation necrosis from tumor progression after radiosurgery for brain metastases.
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Introduction

Brain metastases are the most common type of intracranial tumors, occurring in 9%–17% of 

patients with cancer [1]. Aggressive treatment of brain metastases with stereotactic 

radiosurgery has improved the median survival time for patients with brain metastases [2; 3], 

but approximately 10% of patients receiving radiosurgery for their brain tumor develop 

radionecrosis [4; 5]. Necrosis typically manifests at 6–9 months after radiosurgery with 

edema and severe neuropsychological disturbances; these symptoms, and the appearance of 

radiation necrosis on magnetic resonance imaging (MRI), closely mimic tumor progression. 

Because tumor progression can be treated but radiation necrosis is irreversible, the ability to 

distinguish the two after stereotactic radiosurgery (e.g., Gamma Knife) for brain metastases 

is clinically important.

At present, confirmation of necrosis versus progression mainly relies on surgical resection, 

an invasive approach with risk of surgery induced neurologic deficits and other operative 

complications such as wound infection. Additionally late stage cancer patients often carry 

medical comorbidities which can compound surgical risk. On the other hand, part of routine 

follow-up care after Gamma Knife treatment involves undergoing high-resolution MRI at 

each visit, which can include T1 weighted (T1) scans, T1 weighted post-contrast (T1c) 

scans, T2 weighted (T2) scans, fluid-attenuated inversion recovery (FLAIR) scans, and 

diffusion-weighted MR scans, among others. However, to date none of these scan types can 

reliably distinguish radiation necrosis from tumor progression based on lesion appearance 

(Figure 1). Other special imaging approaches [6; 7] may be useful to distinguish radiation 

necrosis from tumor progression, but they are not generally available.

An alternative to relying entirely on lesion appearance on various types of scans is to use the 

radiomic features of the MR image data. Radiomic features are quantitative descriptors that 

reflect textural variations in image intensity, shape, size or volume to offer information on 

tumor phenotype [8–13]. Here, we explored the possibility of using radiomic features 

extracted from MR images for predictive modeling to distinguish radiation necrosis from 

tumor progression after Gamma Knife radiosurgery for brain metastases.

Materials and Methods

Patient Data

This retrospective analysis of data from MR images was approved by the institutional review 

board, and the requirement for informed consent was waived. Eligibility criteria were as 

follows. (a) treatment with Gamma Knife radiosurgery for brain metastases with subsequent 

pathologically confirmed tumor progression or radiation necrosis via histologic resection or 

imaging during follow-up from August 2009 through August 2016; (b) availability of at least 

two sets of MR scans obtained at two separate follow-up times after radiosurgery but before 
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confirmation; and (c) an identical sequence protocol for all MR scans, including T1, T1c, 

T2, and FLAIR. Patients were excluded if the MRI data were of poor quality because of 

motion artifacts or poor contrast injection. All MR images were acquired with a 1.5-T MRI 

system (Signa HDxt; GE Healthcare, Barrington, IL) during routine clinical visits. All 

images were axial scans with field of view of 22 cm, slice thickness of 5 mm, and slice 

spacing of 6.5 mm. We identified 87 patients who met these criteria; 1 or 2 lesions were 

identified per patient, for a total of 73 tumor progression lesions and 24 radiation necrosis 

lesions. The outcome of the tumor resection was used to label the lesion as necrosis or tumor 

progression. Table 1 shows the demographic summary of patients enrolled into this study.

Prediction using Radiomic Features

The overall workflow of this study is depicted in Figure 2; each step in the process is 

described further below.

Lesion segmentation—Each lesion was delineated on each type of MRI sequence (T1, 

T1c, T2, and FLAIR) for each patient by using the VelocityAI software (version 3.0.1; 

Varian Medical Systems, Atlanta, GA). A radiation oncologist contoured the regions of 

interest manually on the T1c images because the lesions were easier to identify after contrast 

injection than on the other scan types. The T1c contour was then rigidly mapped to the other 

scan sequences (T1, T2, and FLAIR) for each patient at each time point by using the Mattes 

mutual information metric [14] in the Velocity AI. The radiation oncologist then reviewed 

the contours on the T1, T2, and FLAIR scans to ensure correct mapping and modified them 

if necessary.

Preprocessing and feature calculation—Image preprocessing and radiomic feature 

extraction and calculation were done with Imaging Biomarker Explorer (IBEX) (http://bit.ly/

IBEX_MDAnderson), an open-source software tool based on Matlab and C/C++ [15]. Image 

preprocessing to reduce uncertainty in feature analysis was done as follows [16]. First, an 

edge-preserving smoothing filter was applied to the tumor volume before the feature 

calculations [17] to preserve meaningful edge information while smoothing out undesirable 

imaging noise. Next, different thresholds were applied to the lesion volume on each scan 

type to exclude possible brain tissue and to define the final lesion volume. Based on our 

experience, we set the following low thresholds for image intensity values: 120 for T1; 200 

for T1c; 150 for T2; and 50 for FLAIR.

A total of 285 texture features were calculated for each contoured lesion. This feature 

calculation was done for all four scan types at the two time points, resulting in a total of 

2280 radiomic features per lesion. Textural features were organized into six categories 

according to the feature calculation method: direct intensity and intensity histogram [18; 

19]; gray level co-occurrence matrix (COM) [20]; gray level run length matrix (RLM) [21]; 

geometric shape [22; 23]; neighborhood gray-tone difference matrix (NGTDM) [24]; and 

(vi) histogram of oriented gradients (HOG) [25; 26] (Table 2). All features were calculated 

in the 3-dimensional (3D) volume. Some feature values in the COM, RLM, and NGTDM 

categories were also calculated within 2-dimensional (2D) slices of the lesion volume and 
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then averaged over all slices; these averaged features were called 2.5D features to 

distinguish them from those calculated from the 3D volume.

We also calculated “delta” radiomic features, representing the change in features from one 

time point to the next, for feature modeling. These delta values were calculated for each 

MRI sequence, for a total of 1140 delta radiomic features per lesion. Because the time 

separation between the two sets of MRI scans, ΔT, was different for different patients 

(range, 9–119 days), these delta radiomic features were not directly comparable, and so we 

normalized the delta feature value to have a time separation of 30 days for all patients as 

follow:

δFn = 30
ΔT δF,

where δF is the delta feature value before normalization and δFn is the delta feature value 

after normalization.

Feature selection—Not all radiomic features are necessarily useful for distinguishing 

necrosis from progression; in fact, many features are noisy and may lead to overfitting or 

misclassification in feature modeling. The extracted features also presumably included 

substantial redundancy. Therefore, it is important to identify a subset of useful and unique 

features for feature modeling. Previous studies have reported that quantitative analysis of 

tumor tissues is more reproducible than quantification of necrotic tissues [27], which led us 

to use concordance correlation coefficients (CCCs) to quantify the reproducibility of 

radiomic features for feature selection [16; 22; 28]. The CCC value ranges from −1 to 1, 

with 1 representing a high reproducibility, 0 no reproducibility, and −1 inverse 

reproducibility. We calculated the CCC values for each radiomic feature between the two 

time points for the radiation necrosis group and tumor progression group. Radiomic features 

with a CCC value > 0.7 for tumor progression and at the same time a CCC value between 

−0.1 and 0.1 for necrosis were considered potentially useful for distinguishing necrosis from 

progression.

Feature modeling—We used two sets of features for modeling—the radiomic features at 

the second time point and the delta features (change from the first to the second time point). 

The second time point scans were obtained close to the time of pathologic confirmation, and 

features from those scans may be more consistent with the actual outcomes than features 

obtained at the first time point. In contrast, the delta radiomic features reflected difference in 

features from one time point to the next for both the necrotic and progression groups. Delta 

radiomic features could be distinguishable based on previous reproducibility studies [27]. 

Radiomic features or delta radiomic features were input into five types of classifiers for 

modeling: decision trees; discriminant analysis; support vector machines; nearest neighbor 

classifiers and ensemble classifiers [29] by using the classification learner in Matlab (version 

2015b, Mathworks, Natick, MA). The modeling was done on the basis of the selected 

radiomic features in the previous step using the CCC values, to predict radiation necrosis or 

tumor progression. A heuristic approach was used by testing the possibility of all 

combinations of selected features for feature modeling. We used leave-one-out cross 
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validation to validate the predictive models. The performance of the predictive models was 

evaluated by analysis of the area under the curve (AUC) of the receiver operating 

characteristic (ROC) and with confusion matrices, which are tables used to describe the 

performance of the prediction model on a set of test data for which the true values are 

known. Finally, we compared the prediction performance of the radiomic features at the 

second time point with that of the delta radiomic features.

Results

Feature Selection

Comparisons of reproducibility for all radiomic features between the necrotic lesions and the 

progressive lesions are shown as a heat map in Figure 3. Those features showing distinctly 

different CCCs for necrosis (−0.1 < CCC < 0.1) versus progression (CCC > 0.7) are 

highlighted for the COM features. Reproducibility of these features was found to be fairly 

high for the progressive lesions but not for the necrotic lesions. Features considered 

potentially distinguishable between these two groups were then selected for subsequent 

modeling. We found that most radiomic features extracted from the T1, T2, and FLAIR 

sequences did not show sufficient separation between these two groups except the HOG 

skewness feature extracted from the T2. From the T1c scans, we were able to select 42 

radiomic features using the criterion defined by the CCC values, and most of them are COM 

features (Table 2).

Feature Modeling

The ROC curves and the confusion matrices for the feature modeling are shown in Figure 4 

and Table 3. In feature modeling, because the training data was highly skewed, with the 

number of the progression lesion much more than that of the necrosis lesion, we found that 

the best classifier for this situation was the RUSBoost[30], one of the ensemble classifiers in 

our evaluation. The RUSBoost is a decision tree based classifier. We used the following 

parameters for RUSBoost classifier in our evaluation: maximum number of splits as 50, 

number of learners as 150, and learning rate as 0.1. For the delta radiomic features, the best 

predictive features were the combination of 2 direct intensity features from T1c (energy and 

variance), 2 2.5D-RLM features from T1c (high gray level run emphasis and short run high 

gray level emphasis), and the HOG skewness feature from T2. The overall accuracy of the 

leave-one-out cross validation was 73.2%, with an accuracy for predicting radiation necrosis 

of 58.3% and an accuracy for predicting tumor progression of 78.1%. The AUC of the ROC 

curve was 0.73. In contrast, for the radiomic features at the second time point, the overall 

accuracy of the leave-one-out cross validation for those features was 69.1%, with an 

accuracy for predicting radiation necrosis of 54.2% and an accuracy for predicting tumor 

progression of 74.0%. The AUC of the ROC curve was 0.65.

Discussion

We developed a predictive model based on radiomic features extracted from MR images to 

distinguish radiation necrosis from tumor progression after Gamma Knife radiosurgery for 

brain metastases. Previous studies on feature reproducibility for necrotic tissue [27] led us to 

Zhang et al. Page 5

Eur Radiol. Author manuscript; available in PMC 2018 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



propose using CCC values for feature selection, both to reduce redundancy and identify 

features useful for predictive modeling. We found this feature selection approach to be 

effective, and believe that our findings will be a useful addition to radiomics research on 

identifying features that are useful for outcome modeling for clinical applications.

The major finding of this study was that the delta radiomic features extracted from T1c MR 

images had great potential for distinguishing radiation necrosis from tumor progression for 

patients treated with Gamma Knife radiosurgery. Because of the unbalanced of the training 

data and the relatively small amount of the training data, it was difficult to conclude whether 

a predictive model could be developed to reliably predict the outcome. However, we did find 

that radiomic features extracted from T1c were more valuable than those extracted from 

other MR sequences in this study (T1, T2, and FLAIR). In future studies of using imaging 

features to distinguish radiation necrosis from tumor progression, the features identified in 

this study should be investigated first for their predictive value.

To the best of our knowledge, we are the first to use MR-based delta radiomic features to 

distinguish radiation necrosis from tumor progression after Gamma Knife radiosurgery for 

brain metastatic lesions. Distinguishing between these two conditions is challenging and is 

the focus of considerable research in the field of neuro-oncology. However, many published 

studies seek to develop new imaging approaches to improve diagnosis, such as MRI 

spectroscopy and perfusion MRI [6], dynamic contrast-enhanced MRI [31], and positron 

emission tomography imaging [7], among others. Although these studies are important, 

these approaches are generally expensive and require considerable development before 

clinical use. Some investigators have used radiomic features to distinguish radiation necrosis 

from tumor progression [10; 12; 32–34], but those studies used radiomic features obtained at 

a single time point instead of using changes in radiomic features over time to model or 

classify features. Because radiomic features seem to keep changing over time, determining 

the best time to extract features for modeling is difficult, and models built on these features 

may not be sufficiently robust to account for variations over time. Our study found that delta 

radiomic features had higher predictive value than did radiomic features extracted from a 

single time point. Our approach may also be useful as a noninvasive way of determining the 

status of an enlarging lesion after radiosurgery as well as aiding the choice of therapy once a 

lesion has been detected (e.g., surgical resection versus conservative medical management).

Our study had some limitations. First, the progression group had two times more data 

samples than the necrosis group. This imbalance greatly skewed the outcome of feature 

modeling for most classifiers limiting the predictive capability and accuracy. The limited 

numbers of lesions (and patients) reflected the nature of the treatment. We plan to add more 

data samples to our model when new patient data become available. Second, although 

patients were asked to return for scheduled follow-up visits, the follow-up interval varied 

among patients, and thus the time separation for calculating the delta radiomic features was 

different among patients. In an attempt to mitigate this limitation, we scaled the time interval 

to 30 days for all patients, under the assumption that if the radiomic features changed, that 

change would be linear during that period. This may be an oversimplification; although the 

assumption is reasonable, it may not be consistent with the actual changes in features, which 

are unknown at this time. Including data samples at additional time points could potentially 
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address this problem. Third, uncertainties were present in our analysis that could have 

affected the outcomes. The boundaries of the actual lesion were not known. Lesion 

segmentation was based on the best judgment of the radiation oncologists and could have 

varied among individuals. Unlike CT images, MR image values are not calibrated, and thus 

the same tissue could appear different on different MRI systems. Although some have 

proposed ways of normalizing MR intensity values [35], the efficacy of normalization is not 

known. Hence rather than using normalization, we chose threshold values for intensity of the 

lesion volume based on our experience, acknowledging that contrast-enhanced MR scans 

might not be suitable for intensity normalization. Finally, implementation of current 

radiomic analysis at clinical routine is still difficult because it involves complex 

computational steps with frequent human interactions. In addition, radionomic features 

differentiating tumor progression and necrosis might also be dependent of the tumor origin 

and biology. Currently, a distinctive analysis of radiomic features in correlation to their 

tumor origin is not available. This will be an important topic of our future studies.

In conclusion, we developed a prediction tool using changes in radiomic features extracted 

from MR scans to distinguish radiation necrosis from tumor progression after brain 

radiosurgery for metastatic lesions. We found that combination of several delta radiomic 

features from both T1-weighted post-contrast and T2-weighted MR scans gave rise to the 

best prediction performance in a RUSBoost ensemble model. This tool may aid decision-

making regarding the choice of surgical resection versus conservative medical management 

for patients suspected of having progression or necrosis after Gamma Knife radiosurgery for 

brain metastases.
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Abbreviation and acronyms

AUC Area under the curve

CCC Concordance correlation coefficient

COM Co-occurrence matrix

FLAIR Fluid-attenuated inversion recovery

HOG Histogram of oriented gradients

IBEX Imaging Biomarker Explorer

MRI Magnetic resonance imaging

NGTDM Neighborhood gray-tone difference matrix

RLM Run length matrix

ROC Receiver operating characteristic
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T1c T1 weighted post-contrast
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Key points

• Some radiomic features showed better reproducibility for progressive lesions 

than necrotic ones

• Delta radiomic features can help to distinguish radiation necrosis from tumor 

progression

• Delta radiomic features had better predictive value than did traditional 

radiomic features
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Figure 1. 
Progressive lesions (left) are quite similar in appearance to necrotic lesions (middle) on both 

T1 weighted post-contrast magnetic resonance (MR) images (a and b) and T2 weighted MR 

images (d and e). Differences in intensity values within the lesions are shown at right (blue 

indicates progressive lesion, red necrosis).
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Figure 2. 
A generic framework for using radiomic features to create a predictive model. Steps include 

lesion segmentation, image preprocessing and feature extraction, and feature selection, 

analysis, and modeling.
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Figure 3. 
A heat map showing concordance correlation coefficient (CCC) values for each of the 

radiomic features calculated in the tumor-progression group and those calculated in the 

necrosis group for the different types of magnetic resonance scans (T1, T1 postcontrast 

[T1c], T2, and fluid-attenuated inversion recovery [FLAIR]). Distinct CCC values between 

these two groups were highlighted for the COM features. Abbreviations: IHIST, direct 

intensity and intensity histogram; COM, gray level co-occurrence matrix; RLM, gray level 

run length matrix; SHAPE, geometric shape; NGTDM, neighborhood gray-tone difference 

matrix; HOG, histogram of oriented gradients.
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Figure 4. 
Receiver operating characteristic curve showing the performance of two predictive models in 

leave-one-out cross-validation. (a) Predictive model using delta radiomic features; (b) 

predictive model using the radiomic features extracted from the scan obtained at the second 

time point.
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Table 1

The demographic summary of patients enrolled into this study. All data in the table are out of 84 patients, with 

3 patients excluded due to the lack of documented radiation data.

All patients (n = 84) Necrosis Patients (n= 19) Non-necrosis Patients (n=65)

Gender

 Male 46 7 39

 Female 38 12 26

Number Alive 12 3 9

Age at SRS (years) 28–79 37–71 28–79

Primary Histology

 Lung 21 5 16

 Melanoma 42 8 34

 Renal 5 2 3

 Breast 10 3 7

 Other 6 1 5

Prior WBRT 22 7 15

Chemotherapy prior to SRS 61 13 48

Chemotherapy after SRS 37 11 26

Interval between SRS and resection (days) 267 (48–1307) 258 (102–1307) 26 (48–920)

 Median (range)

SRS Radiation Dose (Gy) 20 (13–24)* 18 (14–22) 20 (13–24)

 Median (range)

Prior SRS 9 1 8

*
Out of 81 patients, with 6 patients excluded due to the lack of documented radiation dose.
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Table 3

Confusion matrix of the predictive model built from delta radiomic features or the radiomic features at the 

second time point in leave-one-out cross-validation.

True Class

Delta radiomic features Necrosis Progression

 Predict Necrosis 14 (58.3%) 10 (41.7%)

Progression 16 (21.9%) 57 (78.1%)

Radiomic features at second time point

 Predict Necrosis 13 (54.2%) 11 (45.8%)

Progression 19 (26.0%) 54 (74.0%)
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