Skip to main content

Advertisement

Log in

Multiparametric fully-integrated 18-FDG PET/MRI of advanced gastric cancer for prediction of chemotherapy response: a preliminary study

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate usefulness of multiparametric fully integrated 18-FDG PET/MRI in predicting treatment response after chemotherapy for unresectable advanced gastric cancers (AGCs).

Methods

Eleven patients with unresectable AGCs underwent multiparametric 18-FDG PET/MRI examinations prior to chemotherapy. Perfusion parameters obtained via dynamic contrast-enhanced MRI, apparent diffusion coefficient values from diffusion-weighted images, and maximum standardized uptake values (SUVmax) from 18-FDG PET were measured. For parameters obtained from 18-FDG PET/MRI data, interobserver agreement was obtained using intraclass correlation coefficients (ICC) and chemotherapy response relationship was evaluated using the Mann–Whitney test and receiver operating characteristic analysis.

Results

After chemotherapy, six patients were classified into the responder group and five patients into the non-responder group. For all parameters, moderate to nearly perfect agreement was achieved (ICC = 0.452–0.911). K trans values (P = 0.018) and initial area under the curves (iAUCs) (P = 0.045) of gastric cancers were significantly higher in responder group than in non-responder group. The area under the curve was 0.917 for K trans and 0.867 for iAUC. However, SUVmax values were not significantly different between the two groups.

Conclusion

Multiparametric approach using fully integrated 18-FDG PET/MRI was shown to be feasible for patients with unresectable gastric cancers. In addition, K trans and iAUC values can be used as early predictive markers for chemotherapy response.

Key Points:

Multiparametric 18-FDG PET/MRI is feasible for patients with unresectable advanced gastric cancer

K trans and iAUC were significantly higher in the responder group of patients

K trans , iAUC can be utilized as early predictive markers for chemotherapeutic response

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics, 2000. CA Cancer J Clin 50:7–33

    Article  CAS  PubMed  Google Scholar 

  2. Soerjomataram I, Lortet-Tieulent J, Parkin DM et al (2012) Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 380:1840–1850

    Article  PubMed  Google Scholar 

  3. Wohrer SS, Raderer M, Hejna M (2004) Palliative chemotherapy for advanced gastric cancer. Ann Oncol 15:1585–1595

    Article  CAS  PubMed  Google Scholar 

  4. Glimelius B, Ekstrom K, Hoffman K et al (1997) Randomized comparison between chemotherapy plus best supportive care with best supportive care in advanced gastric cancer. Ann Oncol 8:163–168

    Article  CAS  PubMed  Google Scholar 

  5. Cascorbi I (2010) The promises of personalized medicine. Eur J Clin Pharmacol 66:749–754

    Article  PubMed  Google Scholar 

  6. Collins CD, Purohit S, Podolsky RH et al (2006) The application of genomic and proteomic technologies in predictive, preventive and personalized medicine. Vasc Pharmacol 45:258–267

    Article  CAS  Google Scholar 

  7. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  8. Chung HH, Kim JW, Han KH et al (2011) Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol Oncol 120:270–274

    Article  PubMed  Google Scholar 

  9. Lee HY, Hyun SH, Lee KS et al (2010) Volume-based parameter of 18)F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implications. Ann Surg Oncol 17:2787–2794

    Article  PubMed  Google Scholar 

  10. Harry VN, Semple SI, Parkin DE, Gilbert FJ (2010) Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 11:92–102

    Article  PubMed  Google Scholar 

  11. Koh TS, Thng CH, Lee PS et al (2008) Hepatic metastases: in vivo assessment of perfusion parameters at dynamic contrast-enhanced MR imaging with dual-input two-compartment tracer kinetics model. Radiology 249:307–320

    Article  PubMed  Google Scholar 

  12. Rischpler C, Nekolla SG, Kunze KP, Schwaiger M (2015) PET/MRI of the heart. Semin Nucl Med 45:234–247

    Article  PubMed  Google Scholar 

  13. Bagade S, Fowler KJ, Schwarz JK, Grigsby PW, Dehdashti F (2015) PET/MRI evaluation of gynecologic malignancies and prostate cancer. Semin Nucl Med 45:293–303

    Article  PubMed  Google Scholar 

  14. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G (2012) Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 53:1244–1252

    Article  PubMed  Google Scholar 

  15. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G (2012) Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med 53:928–938

    Article  PubMed  Google Scholar 

  16. Joo I, Lee JM, Han JK, Yang HK, Lee HJ, Choi BI (2014) Dynamic contrast-enhanced MRI of gastric cancer: correlation of the perfusion parameters with pathological prognostic factors. J Magn Reson Imaging 41:1608–1614

    Article  PubMed  Google Scholar 

  17. Kim JH, Lee JM, Park JH et al (2013) Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment–a preliminary study. Radiology 266:185–196

    Article  PubMed  Google Scholar 

  18. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  CAS  PubMed  Google Scholar 

  19. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  20. Orton MR, d'Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE–MRI. Phys Med Biol 53:1225–1239

    Article  PubMed  Google Scholar 

  21. Partovi S, Kohan A, Rubbert C et al (2014) Clinical oncologic applications of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging 4:202–212

    PubMed  PubMed Central  Google Scholar 

  22. Song HK, Dougherty L (2000) k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 44:825–832

    Article  CAS  PubMed  Google Scholar 

  23. Kim KW, Lee JM, Jeon YS et al (2013) Free-breathing dynamic contrast-enhanced MRI of the abdomen and chest using a radial gradient echo sequence with K-space weighted image contrast (KWIC). Eur Radiol 23:1352–1360

    Article  PubMed  Google Scholar 

  24. Turkbey B, Thomasson D, Pang Y, Bernardo M, Choyke PL (2010) The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol 16:186–192

    PubMed  Google Scholar 

  25. Cooper RA, Carrington BM, Loncaster JA et al (2000) Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 57:53–59

    Article  CAS  PubMed  Google Scholar 

  26. Lim JS, Kim D, Baek SE et al (2012) Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol 22:1693–1700

    Article  PubMed  Google Scholar 

  27. Kim SH, Lee JM, Gupta SN, Han JK, Choi BI (2014) Dynamic contrast-enhanced MRI to evaluate the therapeutic response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer. J Magn Reson Imaging 40:730–737

    Article  PubMed  Google Scholar 

  28. Roberts C, Issa B, Stone A, Jackson A, Waterton JC, Parker GJ (2006) Comparative study into the robustness of compartmental modeling and model-free analysis in DCE–MRI studies. J Magn Reson Imaging 23:554–563

    Article  PubMed  Google Scholar 

  29. Milosevic M, Fyles A, Hedley D et al (2001) Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61:6400–6405

    CAS  PubMed  Google Scholar 

  30. Chung HW, Lee EJ, Cho YH et al (2010) High FDG uptake in PET/CT predicts worse prognosis in patients with metastatic gastric adenocarcinoma. J Cancer Res Clin Oncol 136:1929–1935

    Article  PubMed  Google Scholar 

  31. Ott K, Herrmann K, Lordick F et al (2008) Early metabolic response evaluation by fluorine-18 fluorodeoxyglucose positron emission tomography allows in vivo testing of chemosensitivity in gastric cancer: long-term results of a prospective study. Clin Cancer Res 14:2012–2018

    Article  CAS  PubMed  Google Scholar 

  32. Di Fabio F, Pinto C, Rojas Llimpe FL et al (2007) The predictive value of 18F-FDG-PET early evaluation in patients with metastatic gastric adenocarcinoma treated with chemotherapy plus cetuximab. Gastric Cancer 10:221–227

    Article  PubMed  Google Scholar 

  33. Ott K, Fink U, Becker K et al (2003) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21:4604–4610

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Se Hyung Kim. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this study was supported by a grant from the Seoul National University Hospital Research Fund No. 03-2013-390. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all patients in this study. Methodology: prospective, observational, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Hyung Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.H., Kim, S.H., Im, SA. et al. Multiparametric fully-integrated 18-FDG PET/MRI of advanced gastric cancer for prediction of chemotherapy response: a preliminary study. Eur Radiol 26, 2771–2778 (2016). https://doi.org/10.1007/s00330-015-4105-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4105-5

Keywords

Navigation