Skip to main content

Advertisement

Log in

Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: the added value of using iodine mapping

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To determine whether quantitative analysis of iodine-enhanced images generated from dual-energy CT (DECT) have added value in distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma (MIA) showing ground-glass nodule (GGN).

Methods

Thirty-four patients with 39 GGNs were enrolled in this prospective study and underwent DECT followed by complete tumour resection. Various quantitative imaging parameters were assessed, including virtual non-contrast (VNC) imaging and iodine-enhanced imaging.

Results

Of all 39 GGNs, four were adenocarcinoma in situ (AIS) (10 %), nine were MIA (23 %), and 26 were invasive adenocarcinoma (67 %). When assessing only VNC imaging, multivariate analysis revealed that mass, uniformity, and size-zone variability were independent predictors of invasive adenocarcinoma (odds ratio [OR] = 19.92, P = 0.02; OR = 0.70, P = 0.01; OR = 16.16, P = 0.04, respectively). After assessing iodine-enhanced imaging with VNC imaging, both mass on the VNC imaging and uniformity on the iodine-enhanced imaging were independent predictors of invasive adenocarcinoma (OR = 5.51, P = 0.04 and OR = 0.67, P < 0.01). The power of diagnosing invasive adenocarcinoma was improved after adding the iodine-enhanced imaging parameters versus VNC imaging alone, from 0.888 to 0.959, respectively (P = 0.029).

Conclusion

Quantitative analysis using iodine-enhanced imaging metrics versus VNC imaging metrics alone generated from DECT have added value in distinguishing invasive adenocarcinoma from AIS or MIA.

Key Points

Quantitative analysis using DECT was used to distinguish invasive adenocarcinoma.

Tumour mass and uniformity were independent predictors of invasive adenocarcinoma.

Diagnostic performance was improved after adding iodine parameters to VNC parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AIS:

Adenocarcinoma in situ

ATS:

American Thoracic Society

AUC:

Area under the receiver operating characteristic curve

CT:

Computed tomography

DECT:

Dual-energy CT

ERS:

European Respiratory Society

GGN:

Ground-glass opacity nodule

HU:

Hounsfield unit

IASLC:

International Association for the Study of Lung Cancer

MIA:

Minimally invasive adenocarcinoma

OR:

Odds ratio

ROC:

Receiver operating characteristic

ROI:

Region of interest

VNC:

Virtual non-contrast

References

  1. Lim HJ, Ahn S, Lee KS et al (2013) Persistent pure ground-glass opacity lung nodules >/= 10 mm in diameter at CT scan: histopathologic comparisons and prognostic implications. Chest 144:1291–1299

    Article  PubMed  Google Scholar 

  2. Son JY, Lee HY, Lee KS et al (2014) Quantitative CT analysis of pulmonary ground-glass opacity nodules for the distinction of invasive adenocarcinoma from pre-invasive or minimally invasive adenocarcinoma. PLoS One 9, e104066

    Article  PubMed Central  PubMed  Google Scholar 

  3. Swensen SJ, Brown LR, Colby TV, Weaver AL (1995) Pulmonary nodules: CT evaluation of enhancement with iodinated contrast material. Radiology 194:393–398

    Article  CAS  PubMed  Google Scholar 

  4. Swensen SJ, Brown LR, Colby TV, Weaver AL, Midthun DE (1996) Lung nodule enhancement at CT: prospective findings. Radiology 201:447–455

    Article  CAS  PubMed  Google Scholar 

  5. Zhang M, Kono M (1997) Solitary pulmonary nodules: evaluation of blood flow patterns with dynamic CT. Radiology 205:471–478

    Article  CAS  PubMed  Google Scholar 

  6. Chae EJ, Song JW, Krauss B et al (2010) Dual-energy computed tomography characterization of solitary pulmonary nodules. J Thorac Imaging 25:301–310

    Article  PubMed  Google Scholar 

  7. Brooks RA (1977) A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J Comput Assist Tomogr 1:487–493

    Article  CAS  PubMed  Google Scholar 

  8. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc 8:381–385

    Article  PubMed  Google Scholar 

  9. Naidich DP, Bankier AA, MacMahon H et al (2013) Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner society. Radiology 266:304–317

    Article  PubMed  Google Scholar 

  10. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  11. Gupta R, Phan CM, Leidecker C et al (2010) Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257:205–211

    Article  PubMed  Google Scholar 

  12. de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M (2010) Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology 255:199–206

    Article  PubMed  Google Scholar 

  13. Mull RT (1984) Mass estimates by computed tomography: physical density from CT numbers. AJR Am J Roentgenol 143:1101–1104

    Article  CAS  PubMed  Google Scholar 

  14. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261:165–171

    Article  PubMed  Google Scholar 

  15. Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378

    Article  PubMed Central  PubMed  Google Scholar 

  16. Chong Y, Kim JH, Lee HY et al (2014) Quantitative CT variables enabling response prediction in neoadjuvant therapy with EGFR-TKIs: are they different from those in neoadjuvant concurrent chemoradiotherapy? PLoS One 9, e88598

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ikeda K, Awai K, Mori T, Kawanaka K, Yamashita Y, Nomori H (2007) Differential diagnosis of ground-glass opacity nodules: CT number analysis by three-dimensional computerized quantification. Chest 132:984–990

    Article  PubMed  Google Scholar 

  18. Chandarana H, Rosenkrantz AB, Mussi TC et al (2012) Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer. Radiology 265:790–798

    Article  PubMed  Google Scholar 

  19. Ozluk Y, Blanco PL, Mengel M, Solez K, Halloran PF, Sis B (2012) Superiority of virtual microscopy versus light microscopy in transplantation pathology. Clin Transpl 26:336–344

    Article  Google Scholar 

  20. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kim HK, Choi YS, Kim J, Shim YM, Lee KS, Kim K (2010) Management of multiple pure ground-glass opacity lesions in patients with bronchioloalveolar carcinoma. J Thorac Oncol 5:206–210

    Article  PubMed  Google Scholar 

  22. Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10:137–143

    Article  PubMed Central  PubMed  Google Scholar 

  23. Yi CA, Lee KS, Kim EA et al (2004) Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 233:191–199

    Article  PubMed  Google Scholar 

  24. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  CAS  PubMed  Google Scholar 

  25. Swensen SJ, Morin RL, Schueler BA et al (1992) Solitary pulmonary nodule: CT evaluation of enhancement with iodinated contrast material–a preliminary report. Radiology 182:343–347

    Article  CAS  PubMed  Google Scholar 

  26. Yamashita K, Matsunobe S, Takahashi R et al (1995) Small peripheral lung carcinoma evaluated with incremental dynamic CT: radiologic-pathologic correlation. Radiology 196:401–408

    Article  CAS  PubMed  Google Scholar 

  27. Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E (2004) Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev 18:2095–2107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Thunnissen E, Beasley MB, Borczuk AC et al (2012) Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study. Mod Pathol 25:1574–1583

    Article  PubMed  Google Scholar 

  29. Kayser G, Kayser K (2013) Quantitative pathology in virtual microscopy: history, applications, perspectives. Acta Histochem 115:527–532

    Article  PubMed  Google Scholar 

  30. Neltner JH, Abner EL, Schmitt FA et al (2012) Digital pathology and image analysis for robust high-throughput quantitative assessment of Alzheimer disease neuropathologic changes. J Neuropathol Exp Neurol 71:1075–1085

    Article  PubMed Central  PubMed  Google Scholar 

  31. Onozato ML, Klepeis VE, Yagi Y, Mino-Kenudson M (2012) A role of three-dimensional (3D) reconstruction in the classification of lung adenocarcinoma. Stud Health Technol Inform 179:250–256

    PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Ho Yun Lee. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding through grants from the Korean Foundation for Cancer Research (KFCR-CB-2011-02-02). Dr. Seonwoo Kim at the Biostatistics Unit of Samsung Biomedical Research Institute kindly provided statistical advice for this manuscript. Institutional Review Board approval was obtained (IRB 2011 09-083). Written informed consent was obtained from all patients in this study. Methodology: prospective, diagnostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ho Yun Lee or Young Mog Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J.Y., Lee, H.Y., Kim, JH. et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: the added value of using iodine mapping. Eur Radiol 26, 43–54 (2016). https://doi.org/10.1007/s00330-015-3816-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3816-y

Keywords

Navigation