Skip to main content
Log in

Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the utility of femoral bone mineral density (BMD) measurements in routine contrast-enhanced multi-detector computed tomography (ceMDCT) using dual-energy X-ray absorptiometry (DXA) as the reference standard.

Methods

Forty-one patients (33 women, 8 men) underwent DXA measurement of the proximal femur. Subsequently, transverse sections of routine ceMDCT of these patients were used to measure BMD of the femoral head and femoral neck. The MDCT-to-DXA conversion equations for BMD and T-score were calculated using linear regression analysis. The conversion equations were applied to the MDCT data sets of 382 patients (120 women, 262 men) of whom 74 had osteoporotic fractures.

Results

A correlation coefficient of r = 0.84 (P < 0.05) was calculated for BMDMDCT values of the femoral head and DXA T-scores of the total proximal femur using the conversion equation T-score = 0.021 × BMDMDCT − 5.90. The correlation coefficient for the femoral neck was r = 0.79 (P < 0.05) with the conversion equation T-score = 0.016 × BMDMDCT − 4.28. Accordingly, converted T-scores for the femoral neck in patients with versus those without osteoporotic fractures were significantly different (female, −1.83 versus −1.47; male, −1.86 versus −1.47; P < 0.05).

Conclusion

BMD measurements of the proximal femur were computed in routine contrast-enhanced MDCT and converted to DXA T-scores, which adequately differentiated patients with and without osteoporotic fractures.

Key Points

BMD measurements of the femur could be derived from routine abdominal ceMDCT.

Derived T-scores could differentiate patients with and without osteoporotic fractures.

Attenuation measurements in the femur in ceMDCT may predict fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  2. Sanchez-Riera L, Wilson N, Kamalaraj N et al (2010) Osteoporosis and fragility fractures. Best practice & research. Clin Rheumatol 24:793–810

    Google Scholar 

  3. Ioannidis G, Papaioannou A, Hopman WM et al (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 181:265–271

    Article  PubMed  Google Scholar 

  4. Boonen S, Autier P, Barette M, Vanderschueren D, Lips P, Haentjens P (2004) Functional outcome and quality of life following hip fracture in elderly women: a prospective controlled study. Osteoporos Int 15:87–94

    Article  PubMed  Google Scholar 

  5. Jiang HX, Majumdar SR, Dick DA et al (2005) Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res 20:494–500

    Article  PubMed  CAS  Google Scholar 

  6. Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561

    Article  PubMed  CAS  Google Scholar 

  7. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    Article  PubMed  CAS  Google Scholar 

  8. Cole ZA, Dennison EM, Cooper C (2008) Osteoporosis epidemiology update. Curr Rheumatol Rep 10:92–96

    Article  PubMed  Google Scholar 

  9. Blake GM, Fogelman I (2010) An update on dual-energy x-ray absorptiometry. Semin Nucl Med 40:62–73. doi:10.1053/j.semnuclmed.2009.08.001

    Article  PubMed  Google Scholar 

  10. Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71:415–424

    Article  PubMed  Google Scholar 

  11. Guglielmi G, de Terlizzi F (2009) Quantitative ultrasond in the assessment of osteoporosis. Eur J Radiol 71:425–431

    Article  PubMed  Google Scholar 

  12. Lewiecki EM, Gordon CM, Baim S et al (2008) International society for clinical densitometry 2007 adult and pediatric official positions. Bone 43:1115–1121

    Article  PubMed  Google Scholar 

  13. Blake GM, Fogelman I (2009) The clinical role of dual energy X-ray absorptiometry. Eur J Radiol 71:406–414

    Article  PubMed  Google Scholar 

  14. Gralow JR, Biermann JS, Farooki A et al (2009) NCCN task force report: bone health in cancer care. J Natl Compr Cancer Netw7:S1–32, quiz S33–35

    Google Scholar 

  15. Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologist 11:1121–1131

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto DS, Viale PH (2009) Update on identifying and managing osteoporosis in women with breast cancer. Clin J Oncol Nurs 13:E18–29

    Article  PubMed  Google Scholar 

  17. Smith MR (2006) Treatment-related osteoporosis in men with prostate cancer. Clin Cancer Res 12:6315s–6319s

    Article  PubMed  CAS  Google Scholar 

  18. WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group (ed) World Health Organization technical report series, 1994/01/01, pp 1–129

  19. Bauer JS, Henning TD, Mueller D, Lu Y, Majumdar S, Link TM (2007) Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. AJR Am J Roentgenol 188:1294–1301

    Article  PubMed  Google Scholar 

  20. Link TM, Koppers BB, Licht T, Bauer J, Lu Y, Rummeny EJ (2004) In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology 231:805–811

    Article  PubMed  Google Scholar 

  21. Baum T, Muller D, Dobritz M, Rummeny EJ, Link TM, Bauer JS (2011) BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software. Eur J Radiol 80:e140–145

    Article  PubMed  Google Scholar 

  22. Baum T, Muller D, Dobritz M, et al (2012) Converted lumbar BMD values derived from sagittal reformations of contrast-enhanced MDCT predict incidental osteoporotic vertebral fractures. Calcif Tissue Int 90:481–487

    Google Scholar 

  23. Pickhardt PJ, Lee LJ, del Rio AM et al (2011) Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 26:2194–2203

    Article  PubMed  Google Scholar 

  24. Papadakis AE, Karantanas AH, Papadokostakis G, Petinellis E, Damilakis J (2009) Can abdominal multi-detector CT diagnose spinal osteoporosis? Eur Radiol 19:172–176

    Article  PubMed  Google Scholar 

  25. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  PubMed  CAS  Google Scholar 

  26. World Medical Association I (1964) Declaration of Helsinki – ethical principles for medical research involving human subjects

  27. Hans D, Downs RW Jr, Duboeuf F et al (2006) Skeletal sites for osteoporosis diagnosis: the 2005 ISCD official positions. J Clin Densitom 9:15–21

    Article  PubMed  Google Scholar 

  28. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  PubMed  CAS  Google Scholar 

  29. Griffith JF, Yeung DK, Tsang PH et al (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res 23:1068–1075

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG BA 4085/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gruber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, M., Bauer, J.S., Dobritz, M. et al. Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry. Eur Radiol 23, 505–512 (2013). https://doi.org/10.1007/s00330-012-2629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2629-5

Keywords

Navigation