Skip to main content
Log in

Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the measurement reproducibility of perfusion fraction f, pseudodiffusion coefficient D * and diffusion coefficient D in colorectal liver metastases and normal liver.

Methods

Fourteen patients with known colorectal liver metastases were examined twice using respiratory-triggered echo-planar DW-MRI with eight b values (0 to 900 s/mm2) 1 h apart. Regions of interests were drawn around target metastasis and normal liver in each patient to derive ADC (all b values), ADChigh (b values ≥100 s/mm2) and intravoxel incoherent motion (IVIM) parameters f, D * and D by least squares data fitting. Short-term measurement reproducibility of median ADC, ADChigh, f, D * and D values were derived from Bland–Altman analysis.

Results

The measurement reproducibility for ADC, ADChigh and D was worst in colorectal liver metastases (−21 % to +25 %) compared with liver parenchyma (−6 % to +8 %). Poor measurement reproducibility was observed for the perfusion-sensitive parameters of f (−75 % to +241 %) and D * (−89 % to +2,120 %) in metastases, and to a lesser extent the f (−24 % to +25 %) and D* (−31 % to +59 %) of liver.

Conclusions

Estimates of f and D * derived from the widely used least squares IVIM fitting showed poor measurement reproducibility. Efforts should be made to improve the measurement reproducibility of perfusion-sensitive IVIM parameters.

Key Points

Quantitative diffusion-weighted MRI parameters are increasingly used for clinical management decisions.

However perfusion-sensitive intravoxel incoherent motion (IVIM) parameters showed poor measurement reproducibility.

Measurement reproducibility of IVIM parameters was worse in metastases than normal liver.

Efforts to improve measurement reproducibility of IVIM parameters should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    PubMed  CAS  Google Scholar 

  2. Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology 249:891–899

    Article  PubMed  Google Scholar 

  3. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361

    Article  PubMed  Google Scholar 

  4. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  5. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  6. Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177:407–414

    PubMed  CAS  Google Scholar 

  7. Koh DM, Blackledge M, Collins DJ et al (2009) Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol 19:2728–2738. doi:10.1007/s00330-009-1469-4

    Article  PubMed  Google Scholar 

  8. Rheinheimer S, Stieltjes B, Schneider F et al (2012) Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters-Initial experience. Eur J Radiol 81:e310–e316

    Article  PubMed  CAS  Google Scholar 

  9. Chow AM, Gao DS, Fan SJ, et al. (2012) Liver fibrosis: an intravoxel incoherent motion (IVIM) study. J Magn Reson Imaging 36:159–167

    Google Scholar 

  10. Sigmund EE, Cho GY, Kim S et al (2011) Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447

    Article  PubMed  CAS  Google Scholar 

  11. Re TJ, Lemke A, Klauss M et al (2011) Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f-maps through automatic vessel and duct segmentation. Magn Reson Med 66:1327–1332

    Article  PubMed  Google Scholar 

  12. Morita S, Kojima S, Hirata M, Suzuki K, Ueno E (2011) Perfusion fraction of diffusion-weighted MRI for predicting the presence of blood supply in ovarian masses. J Magn Reson Imaging 34:1131–1136

    Article  PubMed  Google Scholar 

  13. Lewin M, Fartoux L, Vignaud A, Arrive L, Menu Y, Rosmorduc O (2011) The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol 21:281–290

    Article  PubMed  Google Scholar 

  14. Klauss M, Lemke A, Grunberg K et al (2011) Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol 46:57–63

    Article  PubMed  Google Scholar 

  15. Dopfert J, Lemke A, Weidner A, Schad LR (2011) Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 29:1053–1058

    Article  PubMed  Google Scholar 

  16. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 31:589–600

    Article  PubMed  Google Scholar 

  17. Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 44:769–775

    Article  PubMed  Google Scholar 

  18. Kim SY, Lee SS, Byun JH et al (2010) Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology 255:815–823. doi:10.1148/radiol.10091706

    Article  PubMed  Google Scholar 

  19. Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR (2010) An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 64:1580–1585. doi:10.1002/mrm.22565

    Article  PubMed  Google Scholar 

  20. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917

    Article  PubMed  Google Scholar 

  21. Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  22. Zhang L, Murata Y, Ishida R, Ohashi I, Yoshimura R, Shibuya H (2001) Functional evaluation with intravoxel incoherent motion echo-planar MRI in irradiated salivary glands: a correlative study with salivary gland scintigraphy. J Magn Reson Imaging 14:223–229

    Article  PubMed  CAS  Google Scholar 

  23. Lemke A, Stieltjes B, Schad LR, Laun FB (2011) Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 29:766–776. doi:10.1016/j.mri.2011.03.004

    Article  PubMed  Google Scholar 

  24. Le Bihan D, Turner R, Moonen CT, Pekar J (1991) Imaging of diffusion and microcirculation with gradient sensitization: design, strategy, and significance. J Magn Reson Imaging 1:7–28

    Article  PubMed  Google Scholar 

  25. Neil JJ, Bretthorst GL (1993) On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments. Magn Reson Med 29:642–647

    Article  PubMed  CAS  Google Scholar 

  26. Pang Y, Turkbey B, Bernardo M et al (2012) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med. doi:10.1002/mrm.24277

Download references

Acknowledgments

This work was supported by the Cancer Research UK and EPSRC Cancer Imaging Centre in association with the MRC and Department of Health (England) grant #C1060/A10334 and NHS funding to the NIHR Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreou, A., Koh, D.M., Collins, D.J. et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23, 428–434 (2013). https://doi.org/10.1007/s00330-012-2604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2604-1

Keywords

Navigation