Skip to main content

Advertisement

Log in

PET/CT in primary musculoskeletal tumours: a step forward

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Hybrid imaging with combined positron emission tomography/computed tomography (PET/CT) plays an important role in the staging and management of a wide variety of solid tumours. However, its use in the evaluation of musculoskeletal malignancy has not yet entered routine clinical practice. Cross-sectional imaging with magnetic resonance imaging (MR) and computed tomography have well-established roles but there is increasing evidence for the selective use of PET/CT in the management of these patients. The aims of this article are to review the current evidence and clinical applications of PET/CT in primary musculoskeletal tumours and discuss potential future developments using novel PET tracers and integrated PET/MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hilner BE, Siegel BA, Liu D et al (2008) Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 26:2155–2161

    Article  Google Scholar 

  2. Blodgett TM, Meltzer CC, Townsend DW (2008) PET/CT: form and function. Radiology 242:360–385

    Article  Google Scholar 

  3. Gambhir SS, Cerznin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(Suppl):1S–93S

    CAS  PubMed  Google Scholar 

  4. Israel O, Mor M, Gaitini D et al (2002) Combined functional and structural evaluation of cancer patients with a hybrid camera-based PET/CT system using 18 F-FDG. J Nucl Med 43:1129–1136

    PubMed  Google Scholar 

  5. Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206

    Article  CAS  PubMed  Google Scholar 

  6. Antoch G, Saoudi N, Kuehl H et al (2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22:4357–4368

    Article  PubMed  Google Scholar 

  7. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422

    Article  Google Scholar 

  8. Kim JW, Dang CV (2006) Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930

    Article  CAS  PubMed  Google Scholar 

  9. Feldman F, van Heertum R, Manos C (2003) 18FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 32:201–208

    Article  PubMed  Google Scholar 

  10. Hany TF, Steinert HC, Goerres GW et al (2002) PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 225:575–581

    Article  PubMed  Google Scholar 

  11. Poeppel TD, Krause BJ, Heusner TA et al (2009) PET/CT for the staging and follow-up of patients with malignancies. Eur J Radiol 70:382–392

    Article  CAS  PubMed  Google Scholar 

  12. Jadvar H, Gamie S, Ramanna L et al (2004) PET in the musculoskeletal system. Semin Nucl Med 34:254–261

    Article  PubMed  Google Scholar 

  13. Aoki J, Endo K, Watanabe H et al (2003) FDG-PET for evaluating musculoskeletal tumors: a review. J Orthop Sci 8:435–441

    Article  PubMed  Google Scholar 

  14. Watanabe H, Shinozaki T, Yanagawa T et al (2000) Glucose metabolic analysis of musculoskeletal tumours using 18fluorine-FDG PET as an aid to pre-operative planning. J Bone Joint Surg Br 82:760–767

    Article  CAS  PubMed  Google Scholar 

  15. Adler LP, Blair HF, Makley JT et al (1991) Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 32:1508–1512

    CAS  PubMed  Google Scholar 

  16. Ioannidis JP, Lau J (2003) 18F–FDG PET for the diagnosis and grading of soft tissue sarcoma: a meta-analysis. J Nucl Med 44:717–724

    PubMed  Google Scholar 

  17. Israel-Mardirosian N, Adler LP (2003) Positron emission tomography of soft tissue sarcomas. Curr Opin Oncol 15:327–330

    Article  PubMed  Google Scholar 

  18. Aoki J, Watanabe H, Shinozaki T et al (2003) FDG-PET for preoperative differential diagnosis between benign and malignant soft tissue masses. Skeletal Radiol 32:133–138

    Article  CAS  PubMed  Google Scholar 

  19. Lucas JD, O’Doherty MJ, Cronin BF et al (1999) Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br J Surg 86:550–556

    Article  CAS  PubMed  Google Scholar 

  20. Schwarzbach MH, Dimitrakopoulou-Strauss A, Willeke F et al (2000) Clinical value of [18-F] fluorodeoxyglucose positron emission tomography in soft tissue sarcomas. Ann Surg 231:380–386

    Article  CAS  PubMed  Google Scholar 

  21. Lodge MA, Lucas JD, Marsden PK et al (1999) A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 26:22–30

    Article  CAS  PubMed  Google Scholar 

  22. Chen YM, Huang G, Sun XG et al (2008) Optimizing delayed scan time for FDG PET: comparison of the early and late delayed scan. Nucl Med Commun 29:425–430

    Article  PubMed  Google Scholar 

  23. Hamada K, Tomita Y, Ueda T et al (2006) Evaluation of delayed 18F-FDG PET in differential diagnosis for malignant soft-tissue tumors. Ann Nucl Med 20:671–675

    Article  CAS  PubMed  Google Scholar 

  24. Ferner RE, Golding JF, Smith M et al (2008) [18F] 2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF-1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394

    Article  CAS  PubMed  Google Scholar 

  25. Bredella MA, Torriani M, Hornicek F et al (2007) Value of PET in the assessment of patients with neurofibromatosis type 1. Am J Roentgenol 189:928–935

    Article  Google Scholar 

  26. Warbey VS, Ferner RE, Dunn JT, Calonje E, O'Doherty MJ (2009) [18F] FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging 36:751–757

    Article  CAS  PubMed  Google Scholar 

  27. Schwarzbach MH, Dimitrakopoulou-Strauss A, Mechtersheimer G et al (2001) Assessment of soft tissue lesions suspicious for liposarcoma by F18-deoxyglucose (FDG) positron emission tomography (PET). Anticancer Res 21:3609–3614

    CAS  PubMed  Google Scholar 

  28. Tateishi U, Yamaguchi U, Seki K et al (2007) Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology 245:839–847

    Article  PubMed  Google Scholar 

  29. Schwarzbach MH, Hinz U, Dimitrakopoulou-Strauss A et al (2005) Prognostic significance of preoperative [18-F] flourodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. Ann Surg 241:286–294

    Article  PubMed  Google Scholar 

  30. Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach MH et al (2001) Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 42:713–720

    CAS  PubMed  Google Scholar 

  31. Eary JF, O’Sullivan F, Powitan Y et al (2002) Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29:1149–1154

    Article  CAS  PubMed  Google Scholar 

  32. Bredella MA, Caputo GR, Steinbach LS (2002) Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. Am J Roentgenol 179:1145–1150

    Google Scholar 

  33. Evilevitch V, Weber WA, Tap WD et al (2008) Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 14:715–720

    Article  CAS  PubMed  Google Scholar 

  34. Choi H, Charnsangavej C, Faria SC et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25:1753–1759

    Article  PubMed  Google Scholar 

  35. Goerres GW, Stupp R, Barghouth G et al (2005) The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging 32:153–162

    Article  CAS  PubMed  Google Scholar 

  36. Gayed I, Vu T, Iyer R et al (2004) The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 45:17–21

    CAS  PubMed  Google Scholar 

  37. Dehdashti F, Siegel BA, Griffeth LK et al (1996) Benign versus malignant intraosseous lesions: discrimination by means of PET with 2-[F-18] flouro-2-deoxy-D-glucose. Radiology 200:243–247

    CAS  PubMed  Google Scholar 

  38. Aoki J, Watanabe H, Shinozaki T et al (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777

    CAS  PubMed  Google Scholar 

  39. Tian R, Su M, Tian Y et al (2009) Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions. Skeletal Radiol 38:451–458

    Article  PubMed  Google Scholar 

  40. Zhuang H, Pourdehnad M, Lambright ES et al (2001) Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 42:1412–1417

    CAS  PubMed  Google Scholar 

  41. Strobel K, Exner UE, Stumpe KD et al (2008) The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 35:2000–2008

    Article  CAS  PubMed  Google Scholar 

  42. Brenner W, Bohuslavizki KH, Eary JF (2003) PET imaging of osteosarcoma. J Nucl Med 44:930–942

    PubMed  Google Scholar 

  43. Franzius C, Sciuk J, Daldrup-Link HE, Jurgen H, Schober O (2000) FDG PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311

    Article  CAS  PubMed  Google Scholar 

  44. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol 177:229–236

    CAS  Google Scholar 

  45. Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  46. Franzius C, Daldrup-Link HE, Sciuk J et al (2001) FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 12:479–486

    Article  CAS  PubMed  Google Scholar 

  47. Werner MK, Parker JA, Kolodny GM, English JR, Palmer MR (2009) Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT. Am J Roentgenol 193:1640–1645

    Article  Google Scholar 

  48. Cheon GJ, Kim MS, Lee JA et al (2009) Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med 50:1435–1440

    Article  CAS  PubMed  Google Scholar 

  49. Franzius C, Sciuk J, Brinkschmidt C et al (2000) Evaluation of chemotherapy response in primary bone tumors with F-18 FDG PET compared with histologically assessed tumor necrosis. Clin Nucl Med 25:874–881

    Article  CAS  PubMed  Google Scholar 

  50. Ye Z, Zhu J, Tian M et al (2008) Response of osteogenic sarcoma to neoadjuvant therapy: evaluated by 18F-FDG-PET. Ann Nucl Med 22:475–480

    Article  PubMed  Google Scholar 

  51. Costelloe CM, Macapinlac HA, Madewell JE et al (2009) 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 50:340–347

    Article  PubMed  Google Scholar 

  52. Franzius C, Daldrup-Link HE, Wagner-Bohn A et al (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    Article  CAS  PubMed  Google Scholar 

  53. Ludwig JA (2008) Ewing sarcoma: historical perspectives, current state-of-the-art, and opportunities for targeted therapy in the future. Curr Opin Oncol 20:412–418

    Article  PubMed  Google Scholar 

  54. Kleis M, Daldrup-link H, Matthay K et al (2009) Diagnostic value of PET-CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 36:23–36

    Article  PubMed  Google Scholar 

  55. Völker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441

    Article  PubMed  Google Scholar 

  56. Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 94:3277–3284

    Article  CAS  PubMed  Google Scholar 

  57. Arush MW, Israel O, Postovsky S et al (2007) Positron emission tomography/computed tomography with 18-fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 49:901–905

    Article  PubMed  Google Scholar 

  58. Furth C, Amthauer H, Denecke T, Ruf J, Henze G, Gutberlet M (2006) Impact of whole body MRI and FDG-PET on staging and assessment of therapy response in a patient with Ewing sarcoma. Paediatr Blood Cancer 47:607–611

    Article  CAS  Google Scholar 

  59. Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834

    Article  PubMed  Google Scholar 

  60. Gerth HU, Juergens KU, Dirksen U, Gerss J, Schober O, Franzius C (2007) Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J Nucl Med 48:1932–1939

    Article  PubMed  Google Scholar 

  61. Feldman F, van Heertum R, Saxena C, Parisien M (2005) 18FDG-PET applications for cartilage neoplasms. Skeletal Radiol 34:367–374

    Article  PubMed  Google Scholar 

  62. Brenner W, Conrad EU, Eary JF (2004) FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging 31:189–195

    Article  PubMed  Google Scholar 

  63. Lee FY, Yu J, Chang SS, Fawwaz R, Parisien MV (2004) Diagnostic value and limitations of fluorine -18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg Am 86A(12):2677–2685

    Google Scholar 

  64. Aoki J, Watanabe H, Shinozaki T, Tokunaga M, Inoue T, Endo K (1999) FDG-PET in differential diagnosis and grading of chondrosarcomas. J Comput Assist Tomogr 23:603–608

    Article  CAS  PubMed  Google Scholar 

  65. Kitsoulis P, Vlychou M, Papoudou-Bai A et al (2006) Primary lymphomas of bone. Anticancer Res 26(1A):325–337

    PubMed  Google Scholar 

  66. Park YH, Kim S, Choi SJ et al (2005) Clinical impact of whole-body FDG-PET for evaluation of response and therapeutic decision-making of primary lymphoma of bone. Ann Oncol 16:1401–1402

    Article  CAS  PubMed  Google Scholar 

  67. Kwee TC, Kwee RM, Nievelstein RA (2008) Imaging in staging of malignant lymphoma: a systematic review. Blood 111:504–516

    Article  CAS  PubMed  Google Scholar 

  68. Hutchings M, Barrington SF (2009) PET/CT for therapy response assessment in lymphoma. J Nucl Med 50(Suppl 1):21S–30S

    Article  CAS  PubMed  Google Scholar 

  69. Kasamon YL, Wahl RL (2008) FDG PET and risk-adapted therapy in Hodgkin’s and non-Hodgkin’s lymphoma. Curr Opin Oncol 20:206–219

    Article  PubMed  Google Scholar 

  70. International Myeloma Working Group (2003) Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121(5):749–757

    Article  Google Scholar 

  71. Dimopoulos M, Terpos E, Comenzo RL et al (2009) International Myeloma Working Group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia 23:1545–1556

    Article  CAS  PubMed  Google Scholar 

  72. Breyer RJ 3rd, Mulligan ME, Smith SE, Line BR, Badros AZ (2006) Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol 35:632–640

    Article  PubMed  Google Scholar 

  73. Jadvar H, Conti PS (2002) Diagnostic utility of FDG PET in multiple myeloma. Skeletal Radiol 31:690–694

    Article  PubMed  Google Scholar 

  74. Nanni C, Zamagni E, Farsad M et al (2006) Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging 33:525–531

    Article  PubMed  Google Scholar 

  75. Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R (2005) Value of FDG-PET in the assessment of patients with multiple myeloma. Am J Roentgenol 184:1199–1204

    Google Scholar 

  76. Shortt CP, Gleeson TG, Breen KA et al (2009) Whole-body MRI versus PET in assessment of multiple myeloma disease activity. Am J Roentgenol 192:980–986

    Article  Google Scholar 

  77. Baur-Melnyk A, Buhmann S, Becker C et al (2008) Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. Am J Roentgenol 190:1097–1104

    Article  Google Scholar 

  78. Bartel TB, Haessler J, Brown TL et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114(10):2068–2076

    Article  CAS  PubMed  Google Scholar 

  79. Kim PJ, Hicks RJ, Wirth A et al (2009) Impact of 18F-fluorodeoxyglucose positron emission tomography before and after definitive radiation therapy in patients with apparently solitary plasmacytoma. Int J Radiat Oncol Biol Phys 74(3):740–746

    CAS  PubMed  Google Scholar 

  80. Buck AK, Herrmann K, Büschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F] fluorodeoxythymidine. Clin Cancer Res 14:2970–2977

    Article  CAS  PubMed  Google Scholar 

  81. Watanabe H, Inoue T, Shinozaki T et al (2000) PET imaging of musculoskeletal tumors with fluorine-18 alpha-methyltyrosine: comparison with fluorine-18 fluorodeoxyglucose PET. Eur J Nucl Med 27:1509–1517

    Article  CAS  PubMed  Google Scholar 

  82. Toner GC, Hicks RJ (2008) PET for sarcomas other than gastrointestinal stromal tumors. Oncologist 13(Suppl 2):22–26

    Article  PubMed  Google Scholar 

  83. Yanagawa T, Watanabe H, Inoue T et al (2003) Carbon-11 choline positron emission tomography in musculoskeletal tumors: comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Comput Assist Tomogr 27:175–182

    Article  PubMed  Google Scholar 

  84. Inoue T, Kim EE, Wong FC et al (1996) Comparison of F18 FDG and C11 methionine PET in detection of malignant tumors. J Nucl Med 37:1472–1476

    CAS  PubMed  Google Scholar 

  85. Nanni C, Zamagni E, Cavo M et al (2007) 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 5:68

    Article  PubMed  Google Scholar 

  86. Ghigi G, Micera R, Maffione AM et al (2009) 11C-methionine vs. 18F-FDG PET in soft tissue sarcoma patients treated with neo-adjuvant therapy; preliminary results. In Vivo 23(1):105–110

    CAS  PubMed  Google Scholar 

  87. Von Schulthess GK, Schlemmer HP (2009) A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 36(Suppl1):S3–S9

    Article  Google Scholar 

  88. Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging. Eur J Nucl Med Mol Imaging 36(Suppl1):S113–120

    Article  PubMed  Google Scholar 

  89. Schlemmer HP, Pichler BJ, Krieg R, Heiss WD (2009) An integrated MR/PET system: prospective applications. Abdom Imaging 34:668–674

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Scarsbrook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakkaraju, A., Patel, C.N., Bradley, K.M. et al. PET/CT in primary musculoskeletal tumours: a step forward. Eur Radiol 20, 2959–2972 (2010). https://doi.org/10.1007/s00330-010-1862-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1862-z

Keywords

Navigation