Skip to main content

Advertisement

Log in

Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To quantify permeability changes of the “blood–bone marrow barrier” (BMB) and to detect malignant bone marrow infiltrations before and after conditioning therapy for subsequent leukapheresis using ferumoxtran-10-enhanced magnetic resonance (MR) imaging. Twenty-two patients with malignant non-Hodgkin lymphomas (NHL), including 9 patients (group A) before and 13 patients (group B) after conditioning therapy, underwent MR of the spine before and after infusion of ferumoxtran-10 (0.045 mmol Fe/kg BW). Pulse sequences comprised dynamic T1-GE and pre- and post-contrast T1-SE and STIR sequences. Dynamic ΔSI-data were correlated with the quantity of mobilized CD34+ cells. In addition, the number of focal bone marrow lesions was compared before and after ferumoxtran-10 administration. Dynamic ΔSI-data were higher in group B than in group A, indicating an increased BMB permeability after conditioning therapy. However, ΔSI-data did not correlate with the quantity of mobilized CD34+ cells. Ferumoxtran-10-enhanced STIR images demonstrated a significant signal decline of the normal, non-neoplastic bone marrow and a significantly increased detection of focal neoplastic lesions compared to pre-contrast images (P<0.05). Ferumoxtran-10 depicted the bone marrow response to conditioning therapy by an increase in BMB-permeability, which, however, did not correlate with the number of mobilized CD34+ cells. Ferumoxtran-10 improved the detection of focal bone marrow lesions significantly (P<0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frank H, Weissleder R, Brady TJ (1994) Enhancement of MR angiography with iron oxide: preliminary studies in whole-blood phantom and in animals. AJR 162:209–213

    PubMed  CAS  Google Scholar 

  2. Stillman AE, Wilke N, Li D, Haacke M, McLachlan S (1996) Ultrasmall superparamagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. J Comput Assist Tomogr 20:51–55

    Article  PubMed  CAS  Google Scholar 

  3. Brasch RC, Shames DM, Cohen FM, Kuwatsuru R, Neuder M, Mann JS, Vexler V, Muhler A, Rosenau W (1994) Quantification of capillary permeability to macromolecular magnetic resonance imaging contrast media in experimental mammary adenocarcinomas. Invest Radiol 29(Suppl. 2):8–11

    Article  Google Scholar 

  4. Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31:1–8

    Article  PubMed  CAS  Google Scholar 

  5. Cohen FM, Kuwatsuru R, Shames DM, Neuder M, Mann JS, Vexler V, Rosenau W, Brasch RC (1994) Contrast-enhanced magnetic resonance imaging estimation of altered capillary permeability in experimental mammary carcinomas after X-irradiation. Invest Radiol 29:970–977

    Article  PubMed  CAS  Google Scholar 

  6. Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB (1997) Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 32:741–747

    Article  PubMed  CAS  Google Scholar 

  7. Brasch R, Pham C, Shames D, Roberts T, van Dijke K, van Bruggen N, Mann J, Ostrowitzki S, Melnyk O (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 7:68–74

    Article  PubMed  CAS  Google Scholar 

  8. Weissleder R, Elizondo G, Wittenberg J, Rabito C, Bengele H, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493

    PubMed  CAS  Google Scholar 

  9. Vassallo P, Matei C, Heston WD, McLachlan SJ, Koutcher JA, Castellino RA (1994) AMI-227-enhanced MR lymphography: usefulness for differentiating reactive from tumor-bearing lymph nodes. Radiology 193:501–506

    PubMed  CAS  Google Scholar 

  10. Daldrup–Link HE, Rummeny EJ, Ihssen B, Kienast J, Link TM (2002) Iron-oxide-enhanced MR imaging of bone marrow with non-Hodgkin's lymphoma: differentiation between tumor infiltration and hypercellular bone marrow. Eur Radiol 12:1557–1566

    Article  PubMed  Google Scholar 

  11. Tavassoli M, Yoffey J (1983) Bone marrow structure and function. A.R. Liss, New York

    Google Scholar 

  12. Shirota T, Tavassoli M (1992) Alterations of bone marrow sinus endothelium induced by ionizing irradiatio: Implications in the homing of intravenously transplanted marrow cells. Blood Cells 18:197–214

    PubMed  CAS  Google Scholar 

  13. Hudson G, Yoffey J (1968) Ultrastructure of reticuloendothelial elements in guinea pig bone marrow. J Anat 103:515–525

    PubMed  CAS  Google Scholar 

  14. Daldrup H, Link T, Blasius S, Strozyk A, Könemann S, Jürgens H, Rummeny E (1999) Monitoring radiation induced changes in bone marrow histopathology with ultra-small superparamagnetic iron oxide (USPIO)-enhanced MRI. J Magn Reson Imaging 9:643–652

    Article  PubMed  CAS  Google Scholar 

  15. Vande Berg BC, Lecouvet FE, Kanku JP, Jamart J, Van Beers BE, Maldague B, Malghem J (1999) Ferumoxides-enhanced quantitative magnetic resonance imaging of the normal and abnormal bone marrow: preliminary assessment. J Magn Reson Imaging 9:322–328

    Article  PubMed  Google Scholar 

  16. Shirota T, Tavassoli M (1991) Cyclophosphamide-induced alterations of bone marrow endothelium: implications in homing of marrow cells after transplantation. Exp Hematol 19:369–373

    PubMed  CAS  Google Scholar 

  17. Harousseau JL, Shaughnessy J Jr, Richardson P (2004). Multiple myeloma. Hematology (Am Soc Hematol Educ Program) 237–256

  18. Jung CW (1995) Surface properties of superparamagnetic iron oxide MR contrast agents: ferrumoxides, ferrumoxtran, ferrumoxisil. Magn Res Imag 13:675–691

    Article  CAS  Google Scholar 

  19. Weissleder R, Stark D, Engelstad B, Bacon B, Compton C (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152:167–173

    CAS  Google Scholar 

  20. Chambon C, Clement O, Le Blanche A, Schouman–Claeys E, Frija G (1993) Superparamagnetic iron oxides as positive contrast agents: in vitro and in vivo evidence. Magn Res Imag 11:509–519

    Article  CAS  Google Scholar 

  21. Guimaraes R, Clement O, Bittoun J, Carnot F, Frija G (1993) MR lymphography with superparamagnetic iron nanoparticles in rats: pathologic basis for contrast enhancement. AJR 162:201–207

    Google Scholar 

  22. Brillet PY, Gazeau F, Luciani A, Bessoud B, Cuenod CA, Siauve N, Pons JN, Poupon J, Clement O (2005). Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles. Eur Radiol 15:1369–1377

    Article  PubMed  Google Scholar 

  23. Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup–Link HE (2004). Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858

    Article  PubMed  Google Scholar 

  24. Shames DM, Kuwatsuru R, Vexler V, Muhler A, Brasch RC (1993) Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative non-invasive technique. Magn Reson Med 29:616–622

    Article  PubMed  CAS  Google Scholar 

  25. Iizuka–Mikami M, Nagai K, Yoshida K, Sugihara T, Suetsugu Y, Mikami M, Tamada T, Imai S, Kajihara Y, Fukunaga M (2004). Detection of bone marrow and extramedullary involvement in patients with non-Hodgkin's lymphoma by whole-body MRI: comparison with bone and 67Ga scintigraphies. Eur Radiol 14:1074–1081

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Metz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metz, S., Lohr, S., Settles, M. et al. Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas. Eur Radiol 16, 598–607 (2006). https://doi.org/10.1007/s00330-005-0045-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-0045-9

Keywords

Navigation