Skip to main content
Log in

Diffusion-weighted MR imaging of pleural fluid: differentiation of transudative vs exudative pleural effusions

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the ability of diffusion-weighted MRI in differentiating transudative from exudative pleural effusions. Fifty-seven patients with pleural effusion were studied. Diffusion-weighted imaging (DWI) was performed with an echo-planar imaging (EPI) sequence (b values 0, 1000 s/mm2) in 52 patients. The apparent diffusion coefficient (ADC) values were reconstructed from three different regions. Subsequently, thoracentesis was performed and the pleural fluid was analyzed. Laboratory results revealed 20 transudative and 32 exudative effusions. Transudates had a mean ADC value of 3.42±0.76×10–3 mm2/s. Exudates had a mean ADC value of 3.18±1.82×10–3 mm2/s. The optimum cutoff point for ADC values was 3.38×10–3 mm2/s with a sensitivity of 90.6% and specificity of 85%. A significant negative correlation was seen between ADC values and pleural fluid protein, albumin concentrations and lactate dehydrogenase (LDH) measurements (r=–0.69, –0.66, and –0.46, respectively; p<0.01). The positive predictive value, negative predictive value, and diagnostic accuracy of ADC values were determined to be 90.6, 85, and 88.5%, respectively. The application of diffusion gradients to analyze pleural fluid may be an alternative to the thoracentesis. Non-invasive characterization of a pleural effusion by means of DWI with single-shot EPI technique may obviate the need for thoracentesis with its associated patient morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Light RW (2000) Management of pleural effusions. J Formos Med Assoc 99:523–531

    CAS  Google Scholar 

  2. Broaddus VC, Light RW (1992) What is the origin of pleural transudates and exudates? Chest 102:658–659

  3. Romero-Candeira S, Hernandez L, Romero-Brufao S et al. (2002) Is it meaningful to use biochemical parameters to discriminate between transudative and exudative pleural effusions? Chest 122:1524–1529

  4. Peterman TA, Speicher CE (1984) Evaluating pleural effusions: a two-stage laboratory approach. J Am Med Assoc 252:1051–1053

    Article  CAS  Google Scholar 

  5. Light RW, Macgregor MI, Luchsinger PC, Ball WC Jr (1972) Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med 77:507–513

    CAS  PubMed  Google Scholar 

  6. Maruta T, Narabayashi I, Suematsu T et al. (1991) Clinical value of Gd-DTPA enhanced MRI of pulmonary and mediastinal tumors. Nippon Acta Radiol 51:504–515

    CAS  Google Scholar 

  7. Adachi S, Kono M, Kusumoto M, Itouji E, Sakai E, Tanaka K (1991) Gd-DTPA enhanced MRI: dynamic study in lung cancer patients. Abstract ECR '91 1:55

  8. Frola C, Cantoni S, Turtulici I et al. (1997) Transudative vs exudative pleural effusions: differentiation using Gd-DTPA-enhanced MRI. Eur Radiol 7:860–864

    Article  CAS  PubMed  Google Scholar 

  9. Spüntrup E, Bücker A, Adam G, van Vaals JJ, Günther RW (2001) Differenzierung seröser und putrider Flüssigkeiten in-vitro und in-vivo mit Diffusion gewichteter MRT. Fortschr Röntgenstr 173:65–71

  10. Chan JH, Tsui EY, Luk SH et al. (2001) Diffusion-weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging 26:161–165

    Article  CAS  PubMed  Google Scholar 

  11. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  12. Stehling MJ, Howseman AM, Ordidge RJ et al. (1989) Whole-body echo-planar MR imaging at 0.5 T. Radiology 170:257–263

    CAS  PubMed  Google Scholar 

  13. Porcel JM, Vives M (1999) Classic, abbreviated, and modified Light's criteria. Chest 116:1833–1836

    Article  CAS  Google Scholar 

  14. Davis SD, Henschke CI, Yankelevitz DF, Cahill PT, Yi Y (1990) MR imaging of pleural effusions. J Comput Assist Tomogr 14:192–198

    CAS  PubMed  Google Scholar 

  15. Moritani T, Shrier DA, Numaguchi Y et al. (2000) Diffusion-weighted echo-planar MR imaging: clinical applications and pitfalls. A pictorial essay. Clin Imaging 24:181–192

    Article  CAS  PubMed  Google Scholar 

  16. Basser PJ (2002) Diffusion and diffusion tensor MR imaging. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia, pp 197–213

  17. Le Bihan D (1991) Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 7:1–30

    PubMed  Google Scholar 

  18. Ichikawa T, Haradome H, Hachiya J et al. (1999) Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen: preliminary clinical experience in 61 patients. Abdom Imaging 24:456–461

    Article  CAS  PubMed  Google Scholar 

  19. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    CAS  PubMed  Google Scholar 

  20. Namimoto T, Yamashita Y, Sumi S, Tang Y, Takahashi M (1997) Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology 204:739–744

    PubMed  Google Scholar 

  21. Moteki T, Ishizaka H (1999) Evaluation of cystic ovarian lesions using apparent diffusion coefficient calculated from reordered turboFLASH MR images. Magn Reson Imaging 17:955–963

    Article  PubMed  Google Scholar 

  22. Cercignani M, Horsfield MA (2001) The physical basis of diffusion-weighted MRI. J Neurol Sci 186:11–14

    Google Scholar 

  23. Stehling MK, Evans DF, Lamont G et al. (1989) Gastrointestinal tract: dynamic MR studies with echo-planar imaging. Radiology 171:41–46

    CAS  PubMed  Google Scholar 

  24. Reimer P, Saini S, Hahn PF, Brady TJ, Cohen MS (1994) Clinical application of abdominal echoplanar imaging: optimization using a retrofitted EPI system. J Comput Assist Tomogr 18:673–679

    CAS  PubMed  Google Scholar 

  25. Muller MF, Prasad P, Siewert B, Nissenbaum MA, Raptopoulos V, Edelman RR (1994) Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology 190:475–478

    CAS  PubMed  Google Scholar 

  26. Muller MF, Prasad PV, Bimmler D, Kaiser A, Edelman RR (1994) Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 193:711–715

    CAS  PubMed  Google Scholar 

  27. Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177:407–414

    CAS  PubMed  Google Scholar 

  28. Edelman RR, Gaa J, Wedeen VJ et al. (1994) In-vivo measurement of water diffusion in the human heart. Magn Reson Med 32:423–428

    CAS  PubMed  Google Scholar 

  29. Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H (1999) Diffusion-weighted single-shot echo-planar MR imaging for liver disease Am J Roentgenol 173:393–398

  30. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    CAS  PubMed  Google Scholar 

  31. Burdette JH, Elster AD, Ricci PE (1998) Calculation of apparent diffusion coefficients in brain using two-point and six-point methods. J Comput Assist Tomogr 22:792–794

    Google Scholar 

  32. Ulug AM, Beauchamp N Jr, Bryan RN, van Zijl PC (1997) Absolute quantitation of diffusion constants in human stroke. Stroke 28:483–490

    CAS  PubMed  Google Scholar 

  33. Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8:375–386

    PubMed  Google Scholar 

  34. Baranowska HM, Olszewski KJ (1996) The hydration of proteins in solutions by self-diffusion coefficients: NMR study. Biochim Biophys Acta 1289:312–314

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita Y, Namimoto T, Mitsuzaki K et al. (1998) Mucin-producing tumor of the pancreas: diagnostic value of diffusion-weighted echo-planar MR imaging. Radiology 208:605–609

    CAS  PubMed  Google Scholar 

  36. Eustace S, Masi M di, Adams J, Ward R, Caruthers S, McAlindon T (2000) In-vitro and in-vivo spin-echo diffusion imaging characteristics of synovial fluid: potential non-invasive differentiation of inflammatory and degenerative arthritis. Skeletal Radiol 29:320–323

    Article  PubMed  Google Scholar 

  37. Burgess LJ, Maritz FJ, Taljaard JJF (1995) Comparative analysis of the biochemical parameters used to distinguish between pleural transudates and exudates. Chest 107:1604–1609

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Baysal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baysal, T., Bulut, T., Gökirmak, M. et al. Diffusion-weighted MR imaging of pleural fluid: differentiation of transudative vs exudative pleural effusions. Eur Radiol 14, 890–896 (2004). https://doi.org/10.1007/s00330-003-1995-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-1995-4

Keywords

Navigation