Skip to main content
Log in

Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Comprehensive metabolomic investigations provide a large set of stress-related metabolites and metabolic pathways, advancing crops under heat stress conditions. Metabolomics-assisted breeding, including mQTL and mGWAS boosted our understanding of improving numerous quantitative traits under heat stress.

Abstract

During the past decade, metabolomics has emerged as a fascinating scientific field that includes documentation, evaluation of metabolites, and chemical methods for cell monitoring programs in numerous plant species. A comprehensive metabolome profiling allowed the investigator to handle the comprehensive data groups of metabolites and the equivalent metabolic pathways in an extraordinary manner. Metabolomics, together with transcriptomics, plays an influential role in discovering connections between stress and genes/metabolite, phenotyping, and biomarkers documentation. Further, it helps to decode several metabolic systems connected with heat stress (HS) tolerance in plants. Heat stress is a critical environmental factor that is globally affecting the growth and productivity of plants. Thus, there is an urgent need to exploit modern breeding and biotechnological tools like metabolomics to develop cultivars with improved HS tolerance. Several studies have reported that amino acids, carbohydrates, nitrogen metabolisms, etc. and metabolites involved in the biosynthesis and catalyzing actions play a game-changing role in HS response and help plants to cope with the HS. The use of metabolomics-assisted breeding (MAB) allows a well-organized transmission of higher yield and HS tolerance at the metabolome level with specific properties. Progressive metabolomics systematic techniques have accelerated metabolic profiling. Nonetheless, continuous developments in bioinformatics, statistical tools, and databases are allowing us to produce ever‐progressing, comprehensive insights into the biochemical configuration of plants and by what means this is inclined by genetic and environmental cues. Currently, assimilating metabolomics with post-genomic platforms has allowed a significant division of genetic-phenotypic connotation in several plant species. This review highlights the potential of a state-of-the-art plant metabolomics approach for the improvement of crops under HS. The development of plants with specific properties using integrated omics (metabolomics and transcriptomics) and MAB can provide new directions for future research to enhance HS tolerance in plants to achieve a goal of “zero hunger”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Source: Google Scholar with custom range (Keywords (plant metabolomics + stress name such as drought, cold, heat, salinity, heavy metals, and waterlogging), (metabolomics + biotic stress name such as bacteria, virus, fungi, insects, and parasites) were used for pursuing the number of publications in Google Scholar

Fig. 6
Fig. 7

Modified from Razzaq et al. (2019) (color figure online)

Similar content being viewed by others

References

  • Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492

    Google Scholar 

  • Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347

    CAS  PubMed  Google Scholar 

  • Allwood JW, Goodacre R (2010) An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal 21:33–47

    CAS  PubMed  Google Scholar 

  • Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94:933–942

    CAS  PubMed  Google Scholar 

  • Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Ann Rev Anal Chem 3:433–465

    CAS  Google Scholar 

  • Blum BC, Mousavi F, Emili A (2018) Single-platform ‘multi-omic’profiling: unified mass spectrometry and computational workflows for integrative proteomics–metabolomics analysis. Mol Omics 14:307–319

    CAS  PubMed  Google Scholar 

  • Bowne J, Bacic A, Tester M, Roessner U (2018) Abiotic stress and metabolomics. Ann Plant Rev Online 43:61–85

    Google Scholar 

  • Carraro S, Giordano G, Reniero F, Perilongo G, Baraldi E (2009) Metabolomics: a new frontier for research in pediatrics. J Pediatrics 154:638–644

    Google Scholar 

  • Chaturvedi P, Ghatak A, Weckwerth W (2016) Pollen proteomics: from stress physiology to developmental priming. Plant Reprod 29:119–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla G, Ranjan C (2016) Principle, instrumentation, and applications of UPLC: a novel technique of liquid chromatography. Open Chem J 3:1–16

    Google Scholar 

  • Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46:714–721

    CAS  PubMed  Google Scholar 

  • Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christ B, Pluskal T, Aubry S, Weng J-K (2018) Contribution of untargeted metabolomics for future assessment of biotech crops. Trends Plant Sci 23:1047–1056

    CAS  PubMed  Google Scholar 

  • Clifford C, Vitkin N, Nersesian S, Reid-Schachter G, Francis JA, Koti M (2018) Multi-omics in high-grade serous ovarian cancer: Biomarkers from genome to the immunome. Am J Reprod Immunol 80:e12975

    PubMed  Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6:21

  • Deborde C, Jacob D (2014) MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism. In: Plant metabolism. Springer, pp 3–16

  • De Luca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336:1658–1661

    PubMed  Google Scholar 

  • Dhatt BK, Abshire N, Paul P, Hasanthika K, Sandhu J, Zhang Q, Obata T, Walia H (2019) Metabolic dynamics of developing rice seeds under high night-time temperature stress. Front Plant Sci 10:1443

    PubMed  PubMed Central  Google Scholar 

  • Drachen T, Ellegaard O, Larsen A, Dorch S (2016) Sharing data increases citations. Liber Quart 26:67–82

    Google Scholar 

  • Durand S, Sancelme M, Besse-Hoggan P, Combourieu B (2010) Biodegradation pathway of mesotrione: complementarities of NMR, LC–NMR and LC–MS for qualitative and quantitative metabolic profiling. Chemosphere 81:372–380

    CAS  PubMed  Google Scholar 

  • Eisenreich W, Bacher A (2007) Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochemistry 68:2799–2815

    CAS  PubMed  Google Scholar 

  • Fang C, Fernie AR, Luo J (2019) Exploring the diversity of plant metabolism. Trends Plant Sci 24:83–98

    CAS  PubMed  Google Scholar 

  • Fang C, Luo J (2019) Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism. Plant J 97:91–100

    CAS  PubMed  Google Scholar 

  • Feng J, Long Y, Shi L, Shi J, Barker G, Meng J (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    CAS  PubMed  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763

    CAS  PubMed  Google Scholar 

  • Ghaste M, Mistrik R, Shulaev V (2016) Applications of Fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci 17:816

    PubMed Central  Google Scholar 

  • Ghatak A, Chaturvedi P, Paul P, Agrawal GK, Rakwal R, Kim ST, Weckwerth W, Gupta R (2017) Proteomics survey of Solanaceae family: current status and challenges ahead. J Proteomics 169:41–57

    CAS  PubMed  Google Scholar 

  • Giacomoni F, Le Corguillé G, Monsoor M, Landi M, Pericard P, Pétéra M, Duperier C, Tremblay-Franco M, Martin J-F, Jacob D (2014) Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31:1493–1495

    PubMed  PubMed Central  Google Scholar 

  • Gong L, Chen W, Gao Y, Liu X, Zhang H, Xu C, Yu S, Zhang Q, Luo J (2013) Genetic analysis of the metabolome exemplified using a rice population. Proceed Nati Acad Sci 110:20320–20325

    CAS  Google Scholar 

  • Gorrochategui E, Jaumot J, Lacorte S, Tauler R (2016) Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal Chem 82:425–442

    CAS  Google Scholar 

  • Görling B, Bräse S, Luy B (2016) NMR chemical shift ranges of urine metabolites in various organic solvents. Metabolites 6:27

    PubMed Central  Google Scholar 

  • Hall RD (2018) Plant metabolomics in a nutshell: potential and future challenges. Ann Plant Rev Online 43:1–24

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    CAS  PubMed Central  Google Scholar 

  • Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D (2009) MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem 81:3429–3439

    CAS  PubMed  Google Scholar 

  • Hurtado C, Parastar H, Matamoros V, Piña B, Tauler R, Bayona JM (2017) Linking the morphological and metabolomic response of Lactuca sativa L exposed to emerging contaminants using GC× GC-MS and chemometric tools. Sci Rep 7:6546

    PubMed  PubMed Central  Google Scholar 

  • Hütsch BW, Jahn D, Schubert S (2019) Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J Agron Crop Sci 205:22–32

    Google Scholar 

  • Ihsan MZ, Daur I, Alghabari F, Alzamanan S, Rizwan S, Ahmad M, Waqas M, Shafqat W (2019) Heat stress and plant development: role of sulphur metabolites and management strategies. Acta Agric Scand B Soil Plant Sci 69:332–342

    CAS  Google Scholar 

  • Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) Analytical and statistical approaches to metabolomics research. J Sep Sci 32:2183–2199

    CAS  PubMed  Google Scholar 

  • Jellum E (1977) Profiling of human body fluids in healthy and diseased states using gas chromatography and mass spectrometry, with special reference to organic acids. J Chromatogr B Biomed Sci Appl 143:427–462

    CAS  Google Scholar 

  • Khan W, Chester K, Anjum V, Ahmad W, Ahmad S, Narwaria A, Kumar DP, Katiyar C (2017) Chromatographic profiling of Pancharishta at different stages of its development using HPTLC, HPLC, GC–MS and UPLC–MS. Phytochem Lett 20:391–400

    CAS  Google Scholar 

  • Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish S, Kusolwa P, Rathinasabapathi B (2018) Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front Plant Sci 9:1578

  • Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536

    CAS  PubMed  Google Scholar 

  • Kim T, Dreher K, Nilo-Poyanco R, Lee I, Fiehn O, Lange BM, Nikolau BJ, Sumner L, Welti R, Wurtele ES (2015) Patterns of metabolite changes identified from large-scale gene perturbations in Arabidopsis using a genome-scale metabolic network. Plant Physiol 167:1685–1698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13

    CAS  PubMed  Google Scholar 

  • Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    CAS  PubMed  Google Scholar 

  • Kráľová K, Jampílek J, Ostrovský I (2012) Metabolomics-useful tool for study of plant responses to abiotic stresses. Ecol Chem Eng S 19:133–161

    Google Scholar 

  • Last RL, Jones AD, Shachar-Hill Y (2007) Innovations: towards the plant metabolome and beyond. Nat Rev Mol Cell Biol 8:167

    CAS  PubMed  Google Scholar 

  • Lawas LMF, Li X, Erban A, Kopka J, Jagadish SK, Zuther E, Hincha DK (2019) Metabolic responses of rice cultivars with different tolerance to combined drought and heat stress under field conditions. GigaSci 8:giz050

  • Liu L, Lin L (2020) Effect of Heat Stress on Sargassum fusiforme Leaf Metabolome. J Plant Biol 63:229–241

    CAS  Google Scholar 

  • Lopes AS, Santa Cruz EC, Sussulini A, Klassen A (2017) Metabolomic strategies involving mass spectrometry combined with liquid and gas chromatography. In: Metabolomics: From Fundamentals to Clinical Applications. Springer, pp 77–98

  • Matsuda F, Nakabayashi R, Yang Z, Okazaki Y, Ji Y, Ebana K, Yano M, Saito K (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81:13–23

    CAS  PubMed  Google Scholar 

  • Mazza G, Miniati E (1993) Anthocyanins in fruits, vegetables, and grains. (CRC) Press Inc, Boca Raton, p 362

    Google Scholar 

  • McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, McDougall D, Nosek BA, Ram K, Soderberg CK (2016) Point of view: how open science helps researchers succeed. elife 5:e16800

  • Mitchell JM, Flight RM, Wang QJ, Higashi RM, Fan TW-M, Lane AN, Moseley HN (2018) New methods to identify high peak density artifacts in Fourier transform mass spectra and to mitigate their effects on high-throughput metabolomic data analysis. Metabolomics 14:125

    PubMed  PubMed Central  Google Scholar 

  • Mobin M, Khan MN, Abbas ZK, Ansari HR, Al-Mutairi KA (2017) Significance of sulfur in heat stressed cluster bean (Cymopsis tetragonoloba L. Taub) genotypes: responses of growth, sugar and antioxidative metabolism. Arch Agron Soil Sci 63:288–295

    CAS  Google Scholar 

  • Muhlemann JK, Younts TLB, Muday GK (2018) Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc Nati Acad Sci USA 115:E11188–E11197

    CAS  Google Scholar 

  • Muthuramalingam P, Krishnan SR, Pandian S, Mareeswaran N, Aruni W, Pandian SK, Ramesh M (2018) Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci Rep 8:1–14

    CAS  Google Scholar 

  • Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol 24:10–16

    CAS  PubMed  Google Scholar 

  • Nakabayashi R, Sawada Y, Aoyagi M, Yamada Y, Hirai MY, Sakurai T, Kamoi T, Rowan DD, Saito K (2016) Chemical assignment of structural isomers of sulfur-containing metabolites in garlic by liquid chromatography−fourier transform ion cyclotron resonance−mass spectrometry. J Nutr 146:397S-402S

    CAS  PubMed  Google Scholar 

  • Nägele T, Weckwerth W (2012) Mathematical modeling of plant metabolism-from reconstruction to prediction. Metabolites 2:553–566

    PubMed  PubMed Central  Google Scholar 

  • Nägele T, Mair A, Sun X, Fragner L, Teige M, Weckwerth W (2014) Solving the differential biochemical Jacobian from metabolomics covariance data. PLoS One 9:e92299

    PubMed  PubMed Central  Google Scholar 

  • Nägele T, Fürtauer L, Nagler M, Weiszmann J, Weckwerth W (2016) A strategy for functional interpretation of metabolomic time series data in context of metabolic network information. Front Mol Biosci 3:6

    PubMed  PubMed Central  Google Scholar 

  • Nägele T, Fragner L, Chaturvedi P, Ghatak A, Weckwerth W (2017) Pollen metabolome dynamics: Biochemistry, regulation and analysis. In: Pollen Tip Growth. Springer, pp 319–336

  • Paupière MJ, van Haperen P, Rieu I, Visser RGF, Tikunov YM, Bovy AG (2017) Screening for pollen tolerance to high temperatures in tomato. Euphytica 213:130

    Google Scholar 

  • Peukert M, Lim WL, Seiffert U, Matros A (2016) Mass spectrometry imaging of metabolites in barley grain tissues. Curr Protoc Plant Biol 1:574–591

    PubMed  Google Scholar 

  • Piwowar HA, Vision TJ (2013) Data reuse and the open data citation advantage. PeerJ 1:e175

    PubMed  PubMed Central  Google Scholar 

  • Qu M, Chen G, Bunce JA, Zhu X, Sicher RC (2018) Systematic biology analysis on photosynthetic carbon metabolism of maize leaf following sudden heat shock under elevated CO2. Sci Rep 8:7849

    PubMed  PubMed Central  Google Scholar 

  • Rai A, Saito K (2016) Omics data input for metabolic modeling. Curr Opin Biotechnol 37:127–134

    CAS  PubMed  Google Scholar 

  • Ramautar R, Somsen GW, de Jong GJ (2019) CE-MS for metabolomics: developments and applications in the period 2016–2018. Electrophoresis 40:165–179

    CAS  PubMed  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    CAS  PubMed Central  Google Scholar 

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020a) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, pp 117–145

  • Raza A, Charagh S, Sadaqat N, Jin W (2020b) Arabidopsis thaliana: model plant for the study of abiotic stress responses. In: Plant Family Brassicaceae. Springer, pp 129–180

  • Raza A (2020) Eco-physiological and Biochemical Responses of Rapeseed (Brassica napus L.) to Abiotic Stresses: Consequences and Mitigation Strategies. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10231-z

  • Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F (2019) Metabolomics: a way forward for crop improvement. Metabolites 9:303

    CAS  PubMed Central  Google Scholar 

  • Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, Wadi L, Meyer M, Wong J, Xu C (2019) Pathway enrichment analysis and visualization of omics data using g: profiler, GSEA. Cytoscape Enrich Map Nat Protoc 14:482

    CAS  Google Scholar 

  • Ren S, Ma K, Lu Z, Chen G, Cui J, Tong P, Wang L, Teng N, Jin B (2019) Transcriptomic and metabolomic analysis of the heat-stress response of Populus tomentosa Carr. Forests 10:383

    Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217

    CAS  PubMed  Google Scholar 

  • Rohloff J (2015) Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC-MS-based metabolite profiling. Molecules 20:3431–3462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roldan MVG, Engel B, de Vos RC, Vereijken P, Astola L, Groenenboom M, van de Geest H, Bovy A, Molenaar J, van Eeuwijk F (2014) Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. Metabolomics 10:958–974

    Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Ann Rev Plant Biol 61:463–489

    CAS  Google Scholar 

  • Salem M, Bernach M, Bajdzienko K, Giavalisco P (2017) A simple fractionated extraction method for the comprehensive analysis of metabolites, lipids, and proteins from a single sample. J Vis Exp 124:e55802

    Google Scholar 

  • Salvi P, Kamble NU, Majee M (2018) Stress-inducible galactinol synthase of chickpea (CaGolS) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation. Plant Cell Physiol 59:155–166

    CAS  PubMed  Google Scholar 

  • Sansone S-A, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R, Kristal BS, Lindon J, Mendes P, Morrison N (2007) The metabolomics standards initiative. Nat Biotechnol 25:846–849

    CAS  PubMed  Google Scholar 

  • Dos Santos VS, Macedo FA, Do Vale JS, Silva DB, Carollo CA (2017) Metabolomics as a tool for understanding the evolution of Tabebuia sensu lato. Metabolomics 13:72

    Google Scholar 

  • Sauvage C, Segura V, Bauchet G, Stevens R, Do PT, Nikoloski Z, Fernie AR, Causse M (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165:1120–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabagh AE, Hossain A, Islam MS, Iqbal MA, Raza A, Karademir Ç, Karademir E, Rehman A, Rahman MA, Singhal RK, Llanes A, Raza MA, Mubeen M, Nasim W, Barutçular C, Meena RS, Saneoka H (2020) Elevated CO2 concentration improves heat-tolerant ability in crops. In: Abiotic Stress in Plants. IntechOpen. https://doi.org/10.5772/intechopen.94128

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447

    CAS  PubMed  Google Scholar 

  • Sehgal A, Sita K, Kumar J, Kumar S, Singh S, Siddique KHM, Nayyar H (2017) Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci 8:1776

    PubMed  PubMed Central  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58

    CAS  PubMed  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Obata T, Fernie AR (2014) Systems analysis of metabolic phenotypes: what have we learnt? Trends Plant Sci 19:222–230

    CAS  PubMed  Google Scholar 

  • Templer SE, Ammon A, Pscheidt D, Ciobotea O, Schuy C, McCollum C, Sonnewald U, Hanemann A, Förster J, Ordon F (2017) Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J Exp Bot 68:1697–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theodoridis G, Gika H, Franceschi P, Caputi L, Arapitsas P, Scholz M, Masuero D, Wehrens R, Vrhovsek U, Mattivi F (2012) LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimisation. Metabolomics 8:175–185

    CAS  Google Scholar 

  • Thomason K, Babar MA, Erickson JE, Mulvaney M, Beecher C, MacDonald G (2018) Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PloS One 13:e0197919

  • Turner MF, Heuberger AL, Kirkwood JS, Collins CC, Wolfrum EJ, Broeckling CD, Prenni JE, Jahn CE (2016) Non-targeted metabolomics in diverse sorghum breeding lines indicates primary and secondary metabolite profiles are associated with plant biomass accumulation and photosynthesis. Front Plant Sci 7:953

    PubMed  PubMed Central  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    CAS  PubMed  Google Scholar 

  • van Dam NM, van der Meijden E (2018) A role for metabolomics in plant ecology. Ann Plant Rev Online 43:87–107

    Google Scholar 

  • Valdés-López O, Batek J, Gomez-Hernandez N, Nguyen CT, Isidra-Arellano MC, Zhang N, Joshi T, Xu D, Hixson KK, Weitz KK, Aldrich JT (2016) Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Front Plant Sci 7:517

    PubMed  PubMed Central  Google Scholar 

  • Valledor L, Escandón M, Meijón M, Nukarinen E, Cañal MJ, Weckwerth W (2014) A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms. Plant J 79:173–180

    CAS  PubMed  Google Scholar 

  • Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innovat Food Sci Emer Technol 9:161–169

    CAS  Google Scholar 

  • Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O (2016) Mass spectral databases for LC/MS-and GC/MS-based metabolomics: state of the field and future prospects. TrAC Trends Anal Chem 78:23–35

    CAS  Google Scholar 

  • Voelckel C, Gruenheit N, Lockhart P (2017) Evolutionary transcriptomics and proteomics: insight into plant adaptation. Trends Plant Sci 22:462–471

    CAS  PubMed  Google Scholar 

  • Wada H, Hatakeyama Y, Nakashima T, Nonami H, Erra-Balsells R, Hakata M, Nakata K, Hiraoka K, Onda Y, Nakano H (2020) On-site single pollen metabolomics reveals varietal differences in phosphatidylinositol synthesis under heat stress conditions in rice. Sci Rep 10:1–11

    Google Scholar 

  • Wakayama M, Hirayama A, Soga T (2015) Capillary electrophoresis-mass spectrometry. In: Metabonomics. Springer, pp 113–122

  • Wang L, Fu J, Li M, Fragner L, Weckwerth W, Yang P (2016) Metabolomic and proteomic profiles reveal the dynamics of primary metabolism during seed development of lotus (Nelumbo nucifera). Front Plant Sci 7:750

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Hou L, Lu Y, Wu B, Gong X, Liu M, Wang J, Sun Q, Vierling E, Xu S (2018) Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J Exp Bot 69:5531–5545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Ma K-B, Lu Z-G, Ren S-X, Jiang H-R, Cui J-W, Chen G, Teng N-J, Lam H-M, Jin B (2020) Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC Plant Biol 20:86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Nägele T, Doerfler H, Fragner L, Chaturvedi P, Nukarinen E, Bellaire A, Huber W, Weiszmann J, Engelmeier D (2016) System level analysis of cacao seed ripening reveals a sequential interplay of primary and secondary metabolism leading to polyphenol accumulation and preparation of stress resistance. Plant J 87:318–332

    CAS  PubMed  Google Scholar 

  • Wang Y, Sun J, Qiao J, Ouyang J, Na N (2018) A “soft” and “hard” ionization method for comprehensive studies of molecules. Anal Chem 90:14095–14099

    CAS  PubMed  Google Scholar 

  • Wang J, Lv J, Liu Z, Liu Y, Song J, Ma Y, Ou L, Zhang X, Liang C, Wang F (2019) Integration of transcriptomics and metabolomics for pepper (Capsicum annuum L.) in response to heat stress. Int J Mol Sci 20:5042

  • Watanabe ME (2015) The Nagoya protocol on access and benefit sharing: international treaty poses challenges for biological collections. Bioscience 65:543–550

    Google Scholar 

  • Weber RJ, Lawson TN, Salek RM, Ebbels TM, Glen RC, Goodacre R, Griffin JL, Haug K, Koulman A, Moreno P (2017) Computational tools and workflows in metabolomics: an international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics 13:12

    PubMed  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Ann Rev Plant Biol 54:669–689

    CAS  Google Scholar 

  • Weckwerth W (2008) Integration of metabolomics and proteomics in molecular plant physiology–coping with the complexity by data-dimensionality reduction. Physiol Plant 132:176–189

    CAS  PubMed  Google Scholar 

  • Weckwerth W (2011) Green systems biology—from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteom 75:284–305

    CAS  Google Scholar 

  • Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83

    CAS  PubMed  Google Scholar 

  • Wei S, Yang X, Huo G, Ge G, Liu H, Luo L, Hu J, Huang D, Long P (2020) Distinct Metabolome Changes during Seed Germination of Lettuce (Lactuca sativa L.) in Response to Thermal Stress as Revealed by Untargeted Metabolomics Analysis. Int J Mol Sci 21:1481

  • Wohlgemuth G, Mehta SS, Mejia RF, Neumann S, Pedrosa D, Pluskal T, Schymanski EL, Willighagen EL, Wilson M, Wishart DS (2016) SPLASH, a hashed identifier for mass spectra. Nat Biotechnol 34:1099–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfender J, Nuzillard J, Renault J, Bertrand S (2018) Accelerating metabolite identification in natural product research: toward an ideal combination of LC-HRMS/MS and NMR profiling, in silico databases and chemometrics. Anal Chem 91:704–742

    PubMed  Google Scholar 

  • Wu S, Alseekh S, Cuadros-Inostroza Á, Fusari CM, Mutwil M, Kooke R, Keurentjes JB, Fernie AR, Willmitzer L, Brotman Y (2016) Combined use of genome-wide association data and correlation networks unravels key regulators of primary metabolism in Arabidopsis thaliana. PLoS Genet 12:e1006363

    PubMed  PubMed Central  Google Scholar 

  • Wu S, Tohge T, Cuadros-Inostroza Á, Tong H, Tenenboim H, Kooke R, Méret M, Keurentjes JB, Nikoloski Z, Fernie AR (2018) Mapping the Arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions. Mol Plant 11:118–134

    CAS  PubMed  Google Scholar 

  • Youldash KM, Barutcular C, El Sabagh A, Toptas I, Kayaalp GT, Hossain A, Alharby H, Bamagoos A, Saneoka H, Farooq M (2020) Evaluation of grain yield in fifty-eight spring bread wheat genotypes grown under heat stress. Pak J Bot 52:33–42

    Google Scholar 

  • Zampieri M, Sekar K, Zamboni N, Sauer U (2017) Frontiers of high-throughput metabolomics. Curr Opin Chem Biol 36:15–23

    CAS  PubMed  Google Scholar 

  • Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, Fu GF (2017) Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul 83:313–323

    CAS  Google Scholar 

Download references

Acknowledgments

The author wants to say thanks to several colleagues for scientific discussion, which helped improve the content of the manuscript. The author apologizes to all colleagues whose relevant work could not be cited due to space limitations. Further, I would like to thank three anonymous reviewers for their constructive comments, valuable recommendations, and feedback, which facilitated advance the work.

Funding

There was no external funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

AR conceived the idea, wrote, and prepared the final version of the manuscript.

Corresponding author

Correspondence to Ali Raza.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Manzer H. Siddiqui.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep 41, 741–763 (2022). https://doi.org/10.1007/s00299-020-02635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02635-8

Keywords

Navigation