Skip to main content
Log in

Overexpression of OsIAAGLU reveals a role for IAA–glucose conjugation in modulating rice plant architecture

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Key message

OsIAAGLU could catalyze the reaction of IAA with glucose to generate IAA-glucose. Overexpression of OsIAAGLU in rice resulted in altered rice shoot architecture and root gravitropism.

Abstract

The distribution and levels of indole-3-acetic acid (IAA) within plant tissues are well known to play vital roles in plant growth and development. An important mechanism of regulating free IAA levels in monocots is formation of IAA ester conjugates. In this study, a cytosol-localized protein encoded by the rice gene of indole-3-acetic acid glucosyltransferase (OsIAAGLU) was found to catalyze the reaction of free IAA with glucose to generate IAA-glucose. Expression of OsIAAGLU could be induced by IAA and NAA. The number of tillers and leaf angle was significantly increased with a concomitant decrease in plant height and panicle length in the transgenic rice lines overexpressing OsIAAGLU compared to the wild-type (WT) plants. Phenotypes of iaaglu mutants constructed using the CRISPR/Cas9 system had no obvious differences with WT plants. Furthermore, overexpression of OsIAAGLU resulted in reduced sensitivity to IAA/NAA and altered gravitropic response of the roots in the transgenic plants. Free IAA contents in the leaves, root tips, and lamina joint of OsIAAGLU-overexpressing transgenic lines were lower than those of WT plants. These results support that OsIAAGLU could play a regulatory role in IAA homeostasis and rice architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bandurski RS, Schulze A (1977) Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol 60(2):211–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi M, Koh E, Woo M, Piao R, Oh C, Koh H (2012) Tiller formation in rice is altered by overexpression of OsIAGLU gene encoding an IAA-conjugating enzyme or exogenous treatment of free IAA. J Plant Biol 55(6):429–435

    Article  CAS  Google Scholar 

  • Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63(18):6467–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall PJ (1980) Indole-3-acetyl-myo-inositol in kernels of Oryza sativa. Phytochemistry 19(10):2121–2123

    Article  CAS  Google Scholar 

  • Jackson RG, Lim EK, Li Y, Sandberg G, Hoggett J, Ashford DA, Bowles DJ (2001) Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem 276:4350–4356

    Article  CAS  PubMed  Google Scholar 

  • Jackson RG, Kowalczyk M, Li Y, Higgins G, Ross J, Sandberg G, Bowles DJ (2002) Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J 32(4):573–583

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Ma X, Han P, Wang B, Sun Y, Zhang G, Li Y, Hou B (2013) UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS One 8:e61705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keglević D (1971) Synthesis of 1-O-(indol-3-ylacetyl)-α-D-glucopyranose and its rearrangement into 2-O-(indol-3-ylacetyl)-D-glucopyranose. Carbohyd Res 20(2):293–298

    Article  Google Scholar 

  • Ludwig-Müller J, Walz A, Slovin JP, Epstein E, Cohen JD, Dong W, Town CD (2005) Overexpression of maize IAGLU in Arabidopsis thaliana alters plant growth and sensitivity to IAA but not IBA and 2, 4-D. J Plant Growth Regul 24(2):127–141

    Article  CAS  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Porco S, Pěnčík A, Rashed A, Voß U, Casanova-Sáez R, Bishopp A, Golebiowska A, Bhosale R, Swarup R, Swarup K, Peňáková P, Novák O, Staswick P, Hedden P, Phillips AL, Vissenberg K, Bennett MJ, Ljung K (2016) Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. PNAS 113:11016–11021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S (2013) Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J 73(4):676–688

    Article  CAS  PubMed  Google Scholar 

  • Sherp AM, Westfall CS, Alvarez S, Jez JM (2018) Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. J Biol Chem 293(12):4277–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szerszen JB, Szczyglowski K, Bandurski RS (1994) iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265(5179):1699–1701

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Hayashi K, Natsume M, Kamiya Y, Sakakibara H, Kawaide H, Kasahara H (2014) UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant Cell Physiol 55(1):218–228

    Article  CAS  PubMed  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs KA, Inzé D, Van Breusegem F (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22(8):2660–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Peer WA (2017) Auxin homeostasis: the DAO of catabolism. J Exp Bot 68(12):3145–3154

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Li C, Cao J, Zhang Y, Zhang S, Xia Y, Sun D, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151(4):1889–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q, Geisler M, Jiang D, Qi Y (2015) The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ 38(4):638–654

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lin JE, Harris C, Pereira FCM, Wu F, Blakeslee JJ, Peer WA (2016) DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. PNAS 113:11010–11015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang T, Tong Z (1994) A simplified method for extraction of endogenous IAA, ABA and GAs from rice leaves. Chin Bull Bot 11(4):52–55

    Google Scholar 

  • Zhao S, Xiang J, Xue H (2013) Studies on the rice leaf INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant 6(1):174–187

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Liu Y, Liu S, Mao C, Wu Y, Wu P (2012) A Gain-of-function mutation in OsIAA11 affects lateral root development in rice. Mol Plant 5(1):154–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Planning of Guangzhou City (201607020006) and the National Natural Science Foundation of China (31071345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E-e Liu.

Ethics declarations

Conflict of interest

No conflicts of interest exist.

Additional information

Communicated by Da-Bing Zhang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 251 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Xl., Wang, Hy., Leung, D.W.M. et al. Overexpression of OsIAAGLU reveals a role for IAA–glucose conjugation in modulating rice plant architecture. Plant Cell Rep 38, 731–739 (2019). https://doi.org/10.1007/s00299-019-02402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02402-4

Keywords

Navigation