Skip to main content
Log in

Hydrogen peroxide is involved in methane-induced tomato lateral root formation

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Pharmacological and molecular evidence reveals a novel role of methane (CH4) gas in root organogenesis, the induction of lateral root (LR) formation, and this response might require hydrogen peroxide (H2O2) synthesis.

Abstract

Although plants can produce CH4 and release this to atmosphere, the beneficial role(s) of CH4 are not fully elucidated. In this study, the fumigation with CH4 not only increased NADPH oxidase activity and H2O2 production, but also induced tomato lateral root primordial formation and thereafter LR development. However, exogenously applied argon and nitrogen failed to influence LR formation. Above responses triggered by CH4 were sensitive to the removal of endogenous H2O2 with dimethylthiourea (DMTU; a membrane-permeable scavenger of H2O2), suggesting the hypothesis that CH4’s effect on LR formation could be mediated by endogenous H2O2. Diphenylene iodonium (DPI) inhibition of the H2O2 generating enzyme NADPH oxidase attenuated H2O2 synthesis and impaired LR formation in response to CH4, confirming the requirement of NADPH oxidase-dependent H2O2. Meanwhile, the alterations of endogenous H2O2 concentrations failed to influence CH4 production in tomato seedlings. Molecular evidence revealed that CH4-induced SlCDKA1, SlCYCA2;1, and SlCYCA3;1 transcripts, and -decreased SlKRP2 mRNA were impaired by DMTU or DPI. Contrasting changes in LR formation-related miR390a and miR160 transcripts and their target genes, including SlARF4 and SlARF16, were observed. Together, our pharmacological and molecular evidence suggested the requirement of H2O2 synthesis in CH4-triggered tomato LR formation, partially via the regulation of cell cycle regulatory genes, miRNA-, and tasiRNA-modulated gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ar:

Argon

ARFs:

Auxin response factors

CH4 :

Methane

DMTU:

Dimethylthiourea

DPI:

Diphenylene iodonium

H2DCF-DA:

2′,7′-Dichlorofluorescein diacetate

H2O2 :

Hydrogen peroxide

LR:

Lateral root

LRP:

Lateral root primordia

LSCM:

Laser scanning confocal microscopy

MiRNAs:

MicroRNAs

N2 :

Nitrogen

PR:

Primary root

qPCR:

Quantitative real-time RT-PCR

ROS:

Reactive oxygen species

TasiRNAs:

Transacting short-interfering RNAs

References

  • Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-oxo-decanoyl-l-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736

    Article  CAS  PubMed  Google Scholar 

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Bielach A (2010) Lateral root organogenesis-from cell to organ. Curr Opin Plant Biol 13:677–683

    Article  PubMed  Google Scholar 

  • Bloom AA, Lee-Taylor J, Madronich S, Messenger DJ, Palmer PI, Reay DS, McLeod AR (2010) Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. New Phytol 187:417–425

    Article  CAS  PubMed  Google Scholar 

  • Boros M, Ghyczy M, Érces D, Varga G, Tőkés T, Kupai K, Kaszaki J (2012) The anti-inflammatory effects of methane. Crit Care Med 40:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Bruhn D, Mikkelsen TN, Øbro J, Willats WGT, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol 11:43–48

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Chen O, Ye Z, Cao Z, Manaenko A, Ning K, Zhai X, Sun X (2016) Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions. Free Radical Bio Med 90:1–11

    Article  CAS  Google Scholar 

  • Chen Z, Gu Q, Yu X, Huang L, Xu S, Wang R, Shen W (2018) Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Ann Bot Lond 121:1127–1136

    Article  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Foresi N, Delledonne M, Lamattina L (2013) Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. J Exp Bot 64:3339–3349

    Article  CAS  Google Scholar 

  • Cui W, Qi F, Zhang Y, Cao H, Zhang J, Wang R, Shen W (2015) Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca2+ pathways. Plant Cell Rep 34:435–445

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Cao H, Yao P, Pan J, Gu Q, Xu S, Shen W (2017a) Methane enhances aluminum resistance in alfalfa seedlings by reducing aluminum accumulation and reestablishing redox homeostasis. Biometals 30:719–732

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Zhu D, Shen W, Mei Y, Hu D, Shi Y, Ren Y, Shen W, Gu Q, Xu D, Huang L (2017b) Hydrogen peroxide is involved in β-cyclodextrin-hemin complex-induced lateral root formation in tomato seedlings. Front Plant Sci 8:1445

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  CAS  PubMed  Google Scholar 

  • Fang T, Cao Z, Li J, Shen W, Huang L (2014) Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem 76:44–51

    Article  CAS  PubMed  Google Scholar 

  • Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia—is survival a balancing act? Trends Plant Sci 9:449–456

    Article  CAS  PubMed  Google Scholar 

  • Gibberd MR, Gray JD, Cocks PS, Colmer TD (2001) Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’. Ann Bot Lond 88:579–589

    Article  Google Scholar 

  • Gu Q, Chen Z, Cui W, Zhang Y, Hu H, Yu X, Shen W (2018) Methane alleviates alfalfa cadmium toxicity via decreasing cadmium accumulation and reestablishing glutathione homeostasis. Ecotox Environ Safe 147:861–871

    Article  CAS  Google Scholar 

  • Han B, Duan X, Wang Y, Zhu K, Zhang J, Wang R, Shen W (2017) Methane protects against polyethylene glycol-induced osmotic stress in maize by improving sugar and ascorbic acid metabolism. Sci Rep 7:46185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida EJ, Inzé D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Liu D, Li P (2018a) Methane delays the senescence and browning in daylily buds by re-established redox homeostasis. J Sci Food Agric 98:1977–1987

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Zhao S, Li P, Shen W (2018b) Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis. Postharvest Biol Tec 135:123–130

    Article  CAS  Google Scholar 

  • Jia Y, Li Z, Liu C, Zhang J (2018) Methane medicine: a rising star gas with powerful anti-inflammation, antioxidant, and antiapoptosis properties. Oxid Med Cell Longev 2018:1912746

    PubMed  PubMed Central  Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  PubMed  Google Scholar 

  • Kou N, Xiang Z, Cui W, Li L, Shen W (2018) Hydrogen sulfide acts downstream of methane to induce cucumber adventitious root development. J Plant Physiol 228:113–120

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Kuo CC, Yang IC, Tsai WA, Shen YH, Lin CC, Liang YC, Li YC, Kou YW, King YC, Lai HM, Jeng ST (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wang D, Tao H, Sun X (2012) Is methane a new therapeutic gas? Med Gas Res 2:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JG, Chen H, Zhu QA, Shen Y, Wang X, Wang M, Peng CH (2015) A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview. Atmos Environ 115:26–35

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Wang L, Li J, Samma MK, Xie Y, Wang R, Shen W (2014) Interaction between HY1 and H2O2 in auxin-induced lateral root formation in Arabidopsis. Plant Mol Biol 85:49–61

    Article  CAS  PubMed  Google Scholar 

  • Manzano C, Pallero-Baena M, Casimiro I, Rybel BD, Orman-Ligeza B, Isterdael GV, Del Pozo JC (2014) The emerging role of reactive oxygen species signaling during lateral root development. Plant Physiol 165:1105–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Y, Chen H, Shen W, Shen W, Huang L (2017) Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings. BMC Plant Biol 17:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Ma X, Chen D, Wu P, Chen M (2010) MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun 393:345–349

    Article  CAS  PubMed  Google Scholar 

  • Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32:1–9

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Niu L, Liao W (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Front Plant Sci 7:230

    PubMed  PubMed Central  Google Scholar 

  • Orman-Ligeza B, Parizot B, Rycke RD, Fernandez A, Himschoot E, Breusegem FV, Draye X (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 143:3328–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pangala SR, Hornibrook ER, Gowing DJ, Gauci V (2015) The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Glob Change Biol 21:2642–2654

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  Google Scholar 

  • Qi F, Xiang Z, Kou N, Cui W, Xu D, Wang R, Shen W (2017) Nitric oxide is involved in methane-induced adventitious root formation in cucumber. Physiol Plantarum 159:366–377

    Article  CAS  Google Scholar 

  • Samma MK, Zhou H, Cui W, Zhu K, Zhang J, Shen W (2017) Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa. Biometals 30:97–111

    Article  CAS  PubMed  Google Scholar 

  • Song K, Zhang M, Hu J, Liu Y, Liu Y, Wang Y, Ma X (2015) Methane-rich saline attenuates ischemia/reperfusion injury of abdominal skin flaps in rats via regulating apoptosis level. BMC Surg 15:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su GX, Zhang WH, Liu YL (2006) Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J Integr Plant Biol 48:426–432

    Article  CAS  Google Scholar 

  • Takahashi I, Kojima S, Sakaguchi N, Umeda-Hara C, Umeda M (2010) Two Arabidopsis cyclin A3s possess G1 cyclin-like features. Plant Cell Rep 29:307–315

    Article  CAS  PubMed  Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2-synthase from other NAD(P)H oxidoreductases. Plant Physiol 115:543–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Van Isterdael G, De Veylder L (2011) Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J 30:3430–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkest A, Weinl C, Inzé D, Schnittger A, Veylder LD (2005) Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiol 139:1099–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R (2014) Gasotransmitters: growing pains and joys. Trends Biochem Sci 39:227–232

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Neue HU, Samonte HP (1997) Effect of cultivar difference (‘IR72’, ‘IR65598’ and ‘Dular’) on methane emission. Agric Ecosyst Environ 62:31–40

    Article  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZP, Chang SX, Chen H, Han XG (2013) Widespread non-microbial methane production by organic compounds and the impact of environmental stresses. Earth Sci Rev 127:193–202

    Article  CAS  Google Scholar 

  • Wang ZP, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lü XT, Li LH, Chang S, Zhang YH, Feng JC, Han XG (2016) Methane emissions from the trunks of living trees on upland soils. New Phytol 211:429–439

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang R, Ye Z, Sun X, Chen Z, Xia F, Liu L (2015) Protective effects of methane-rich saline on diabetic retinopathy via anti-inflammation in a streptozotocin-induced diabetic rat model. Biochem Biophys Res Commun 466:155–161

    Article  CAS  PubMed  Google Scholar 

  • Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Shen WB (2011) Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J 66:280–292

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Jiang Y, Cui W, Jin Q, Zhang Y, Bu D, Shen W (2017) Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression. Plant Soil 414:53–67

    Article  CAS  Google Scholar 

  • Ye Z, Chen O, Zhang R, Nakao A, Fan D, Zhang T, Sun X (2015) Methane attenuates hepatic ischemia/reperfusion injury in rats through antiapoptotic, anti-inflammatory, and antioxidative actions. Shock 44:181–187

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60–66

    Article  CAS  PubMed  Google Scholar 

  • Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Wang Q, Cobb GP, Anderson TA (2006) Computational identification of microRNAs and their targets. Comput Biol Chem 30:395–407

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Cheng D, Wang R, Mei Y, Hu H, Shen W, Zhang Y (2018) Nitric oxide contributes to methane-induced osmotic stress tolerance in mung bean. BMC Plant Biol 18:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu K, Cui W, Dai C, Wu M, Zhang J, Zhang Y, Shen W (2016) Methane-rich water alleviates NaCl toxicity during alfalfa seed germination. Environ Exp Bot 129:37–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant no.: BK20181317) and the National Natural Science Foundation of China (31772292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbiao Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Xian Sheng Zhang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, Y., Liu, F. et al. Hydrogen peroxide is involved in methane-induced tomato lateral root formation. Plant Cell Rep 38, 377–389 (2019). https://doi.org/10.1007/s00299-019-02372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02372-7

Keywords

Navigation