Skip to main content
Log in

A highly efficient maize nucellus protoplast system for transient gene expression and studying programmed cell death-related processes

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Conditions for the isolation and transfection of maize nucellus protoplasts were established. We demonstrated its utilization for protein expression, localization, protein–protein interaction, and the investigation of PCD-related processes.

Abstract

Plant protoplasts are an important and versatile cell system that is widely used in the analysis of gene characterization and diverse signaling pathways. Programmed cell death (PCD) occurs throughout the life of plants from embryogenesis to fertilization. The maize nucellus undergoes typical PCD during development of the embryo sac. The nucellus protoplast shows potential for use in research of PCD-related processes. No studies have reported previously the isolation and transfection of nucellus protoplasts. In this study, conditions for the isolation and transfection of maize nucellus protoplasts were established. The maize protoplast system can be used for protein expression, localization, and protein–protein interaction. We applied this system to investigate PCD-related processes. Quantitative real-time PCR analysis revealed that transient expression of MADS29 in the maize nucellus protoplast increases Cys-protease gene transcript level. In addition, β-glucuronidase and luciferase activity assays showed that MADS29 could enhance the promoter activities of the Cys-protease gene. Thus, we demonstrated the potential of a highly efficient maize nucellus protoplast system for transient gene expression and investigation of PCD-related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen P, Yu L, Simon G, Petinakis E, Dean K, Chen L (2009) Morphologies and microstructures of cornstarches with different amylose–amylopectin ratios studied by confocal laser scanning microscope. J Cereal Sci 50:241–247

    Article  CAS  Google Scholar 

  • Coll N, Epple P, Dangl J (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davey M, Cocking E (1972) Uptake of bacteria by isolated higher plant protoplasts. Nature 239:455–456

    Article  Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    Article  CAS  PubMed  Google Scholar 

  • DomõÂnguez F, Moreno J, Cejudo FJ (2001) The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta 213:352–360

    Article  Google Scholar 

  • Faraco M, Di Sansebastiano GP, Spelt K, Koes RE, Quattrocchio FM (2011) One protoplast is not the other! Plant Physiol 156:474–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci USA 93:12094–12097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211

    Article  CAS  PubMed  Google Scholar 

  • Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci USA 102:2238–2243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann R, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers S, Horsch RB, Vasil I, Fraley R (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6:265–270

    Article  CAS  PubMed  Google Scholar 

  • Hu Y-F, Y-p Li, Zhang J, Liu H, Chen Z, Huang Y (2011) PzsS3a, a novel endosperm specific promoter from maize (Zea mays L.) induced by ABA. Biotechnol Lett 33:1465–1471

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693–1700

    Google Scholar 

  • Krens F, Molendijk L, Wullems G, Schilperoort R (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74

    Article  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2008) Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. Mol Plant 1:482–495

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Casani S, Ceccarelli N, Galleschi L, Picciarelli P, Lorenzi R (2007) Programmed cell death of the nucellus during Sechium edule Sw. seed development is associated with activation of caspase-like proteases. J Exp Bot 58:2949–2958

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Ceccarelli N, Picciarelli P, Sorce C, Lorenzi R (2010) Nitric oxide and hydrogen peroxide involvement during programmed cell death of Sechium edule nucellus. Physiol Plantarum 140:89–102

    Article  CAS  Google Scholar 

  • Lu C-A, Lim E-K, Yu S-M (1998) Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J Biol Chem 273:10120–10131

    Article  CAS  PubMed  Google Scholar 

  • Lung S-C, Yanagisawa M, Chuong SD (2011) Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici. Plant Cell Rep 30:473–484

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation conditions. Plant Mol Biol 8:363–373

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Gamborg OL, Miller RA (1972) Uptake of exogenous DNA by plant protoplasts. Can J Bot 50:2077–2080

    Article  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell SD (1979) Fine structure of megagametophyte development in Zea mays L. Can J of Bot 57:1093–1110

    Article  Google Scholar 

  • Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-κB in p53-mediated programmed cell death. Nature 404:892–897

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume set). Cold spring harbor laboratory press, Cold Spring Harbor, New York

    Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:R339–R340

    Article  CAS  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761

    Article  PubMed  Google Scholar 

  • Van Doorn W, Beers E, Dangl J, Franklin-Tong V, Gallois P, Hara-Nishimura I, Jones A, Kawai-Yamada M, Lam E, Mundy J (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed Central  PubMed  Google Scholar 

  • Veley KM, Maksaev G, Frick EM, January E, Kloepper SC, Haswell ES (2014) Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity. Plant Cell 26:3115–3131

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Cheung AY (2000) Programmed cell death in plant reproduction. Plant Mol Biol 44:267–281

    Article  PubMed  Google Scholar 

  • Yin L-L, Xue H-W (2012) The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell 24:1049–1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protoc 2:1565–1572

    Article  CAS  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Chen J, Yi Q, Hu Y, Liu H, Liu Y, Huang Y (2014) Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm. Plant Mol Biol 84:359–369

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim J-M, To TK, Li W (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA 108:12539–12544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No: 91435114), the National Key Basic Research Program of China (No: 2014CB138200), and the Research Fund for Excellent Doctoral Program of Sichuan Agriculture University. We acknowledge Dr. Huang Yanyan (Rice Research Institute, Sichuan Agricultural University, Sichuan) for the kind help of Confocal laser scanning microscopy, and Liang Yueyang (Rice Research Institute, Sichuan Agricultural University, Sichuan) and Zhang (School of Life Sciences, Sun Yat-sen University, Guangzhou) for their support vectors for protein location.

Conflict of interest

All these authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubi Huang.

Additional information

Communicated by Z. Zhang.

J. Chen and Q. Yi contribute equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yi, Q., Song, Q. et al. A highly efficient maize nucellus protoplast system for transient gene expression and studying programmed cell death-related processes. Plant Cell Rep 34, 1239–1251 (2015). https://doi.org/10.1007/s00299-015-1783-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1783-z

Keywords

Navigation