Skip to main content
Log in

A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A GSHS gene, LcGSHS , was cloned from L. chinense for the first time. Evidence is presented here that endogenous SA accumulation maybe important for the regulation of LcGSHS expression level.

Abstract

Glutathione (GSH) plays a pivotal role in heavy metal detoxification. GSH synthetase (GSHS) catalyzes the rate-limiting step of GSH synthesis in plants. Salicylic acid (SA) is one of the important plant hormones, which plays a critical role in triggering plant responses to different stresses such as cadmium (Cd) stress. Until now, little has been done to explore the relationship among the accumulation of endogenous SA, GSHS transcript levels and the GSH content in plants under Cd treatment and we will investigate this link in this study. The chlorophyll content, transcripts level of LcGSHS gene, endogenous SA accumulation, GSH accumulation and Cd concentration in the leaves of Lycium chinense were studied under different treatment conditions. Endogenous SA, LcGSHS transcript expression and GSH content can be induced by Cd treatment in L. chinense, however, reduced by co-treatment with 2-aminoindan-2-phosphonic acid (AIP), an inhibitor of SA biosynthesis. Strong staining was observed in the leaves of Arabidopsis expressing ProLcGSHS::GUS under Cd stress and the staining was reduced by co-treatment with AIP. The transgenic Arabidopsis expressing ProLcGSHS::LcGSHS also showed greater tolerance to Cd stress than wild types. Evidence was presented here that under Cd stress, GSH accumulation occurred via enhanced LcGSHS gene expression and the SA signaling cascade was involved in this accumulation. Furthermore, the overexpression of LcGSHS in transgenic Arabidopsis resulted in greater tolerance to Cd stress than wild-type lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Asano N, Kato A, Miyauchi M, Kizu H, Tomimori T, Matsui K, Nash RJ, Molyneux RJ (1997) Specific α-Galactosidase inhibitors, N-Methylcalystegines structure/activity relationships of calystegines from Lycium Chinense. Eur J Biochem 248:296–303

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. In: Martinez-Zapater J, Salinas J (eds) Arabidopsis protocols. Humana Press, New York, pp 259–266

    Chapter  Google Scholar 

  • Chen J, Goldsbrough PB (1994) Increased activity of [gamma]-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH, Brunet J, Bazin J, Kranner I, Arcy-Lameta AD, Zuily-Fodil Y, Contour-Ansel D (2010) Homoglutathione synthetase and glutathione synthetase in drought-stressed cowpea leaves: expression patterns and accumulation of low-molecular-weight thiols. J Plant Physiol 167:480–487

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Knecht JA, van Dillen M, Koevoets PL, Schat H, Verkleij JA, Ernst WH (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulfide incorporation). Plant Physiol 104:255–261

    PubMed Central  PubMed  Google Scholar 

  • Dong JZ, Wang Y, Wang SH, Yin LP, Xu GJ, Zheng C, Lei C, Zhang MZ (2013) Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J Sci Food Agric 93:310–315

    Article  CAS  PubMed  Google Scholar 

  • Drazic G, Mihailovic N (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci 168:511–517

    Article  CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166:20–31

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Hönicke P, Wirtz M, Hell R, Rennenberg H, Kopriva S (2004) Regulation of sulphate assimilation by glutathione in poplars (Populus tremula × P. alba) of wild type and overexpressing γ-glutamylcysteine synthetase in the cytosol. J Exp Bot 55:837–845

    Article  CAS  PubMed  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report 5:387–405

    Article  CAS  Google Scholar 

  • Kim SJ, Shin YH, Kim K, Park EH, Sa JH, Lim CJ (2003) Regulation of the gene encoding glutathione synthetase from the fission yeast. J Biochem Mol Biol 36:326–331

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  CAS  PubMed  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114:591–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  PubMed Central  PubMed  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mishra A, Choudhuri M (1997) Differential effect of Pb2+ mid Hg2+ on inhibition of germination of seeds of two rice cultivars. Indian J Plant Physiol 2:41–44

    CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M (2000) Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization. Plant Physiol 124:1381–1392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moudouma CFM, Gloaguen V, Riou C, Forestier L, Saladin G (2012) High concentration of cadmium induces AtPCS2 gene expression in Arabidopsis thaliana (L.) Heynh ecotype Wassilewskija seedlings. Acta Physiol Plant 34:1083–1091

    Article  CAS  Google Scholar 

  • Navaza AP, Montes-Bayón M, LeDuc DL, Terry N, Sanz-Medel A (2006) Study of phytochelatins and other related thiols as complexing biomolecules of As and Cd in wild type and genetically modified Brassica juncea plants. J Mass Spectrom 41:323–331

    Article  CAS  PubMed  Google Scholar 

  • Ogawa KI (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal 7:973–981

    Article  CAS  PubMed  Google Scholar 

  • Pál M, Szalai G, Horváth E, Janda T, Páldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szeged 46:119–120

    Google Scholar 

  • Panda SK, Patra HK (2007) Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol Plant 29:567–575

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  CAS  PubMed  Google Scholar 

  • Rüegsegger A, Brunold C (1992) Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99:428–433

    Article  PubMed Central  PubMed  Google Scholar 

  • Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87–97

    Article  PubMed  Google Scholar 

  • Schaller A, Roy P, Amrhein N (2000) Salicylic acid-independent induction of pathogenesis-related gene expression by fusicoccin. Planta 210:599–606

    Article  CAS  PubMed  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Srivastava MK, Dwivedi UN (1998) Salicylic acid modulates glutathione metabolism in pea seedlings. J Plant Physiol 153:409–414

    Article  CAS  Google Scholar 

  • Stritsis C, Claassen N (2013) Cadmium uptake kinetics and plants factors of shoot Cd concentration. Plant Soil 367:591–603

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad M (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Lu L, Yang X, Huang H, Wang K, Brown P (2012) Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biol Plant 56:344–350

    Article  CAS  Google Scholar 

  • Verberne MC, Brouwer N, Delbianco F, Linthorst HJ, Bol JF, Verpoorte R (2002) Method for the extraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem Anal 13:45–50

    Article  CAS  PubMed  Google Scholar 

  • Wawrzyński A, Kopera E, Wawrzyńska A, Kamińska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57:2173–2182

    Article  PubMed  Google Scholar 

  • Wójcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plant 55:125–132

    Article  Google Scholar 

  • Wu D, Ji J, Wang G, Guan W, Guan C, Jin C, Tian X (2014) LcMKK, a novel group A mitogen-activated protein kinase kinase gene in Lycium chinense, confers dehydration and drought tolerance in transgenic tobacco via scavenging ROS and modulating expression of stress-responsive genes. Plant Growth Regul. doi:10.1007/s10725-014-9998-5

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Z-M, Wang J, Wang S-H, Xu L-L (2003) Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174

    CAS  PubMed  Google Scholar 

  • Yoshida S, Tamaoki M, Ioki M, Ogawa D, Sato Y, Aono M, Kubo A, Saji S, Saji H, Satoh S (2009) Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiol Plant 136:284–298

    Article  CAS  PubMed  Google Scholar 

  • Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

  • Zhang H, Forman HJ (2012) Glutathione synthesis and its role in redox signaling. In: Semin Cell Dev Biol. Academic Press, New York, pp 722–728

  • Zhang R, Ah Kang K, Piao MJ, Kim KC, Kim AD, Chae S, Park JS, Youn UJ, Hyun JW (2010) Cytoprotective effect of the fruits of Lycium chinense Miller against oxidative stress-induced hepatotoxicity. J Ethnopharmacol 130:299–306

    Article  PubMed  Google Scholar 

  • Zheng G-Q, Zheng Z-Y, Xu X, Hu Z-H (2010) Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense Mill. of different regions and varieties. Biochem Syst Ecol 38:275–284

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (Grant No. 31401391, 31271419 and 31271793).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Ji or Gang Wang.

Additional information

Communicated by A. Dhingra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, C., Ji, J., Jia, C. et al. A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis . Plant Cell Rep 34, 871–884 (2015). https://doi.org/10.1007/s00299-015-1750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1750-8

Keywords

Navigation