Skip to main content
Log in

Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Suberin is a lipid-phenolic biopolyester deposited in the cell walls of certain boundary tissue layers of plants, such as root endodermis, root and tuber peridermis, and seed coats. Suberin serves as a protective barrier in these tissue layers, controlling, for example, water and ion transport. It is also a stress-induced anti-microbial barrier. The suberin polymer contains a variety of C16–C24 chain-length aliphatics, such as ω-hydroxy fatty acids, α,ω-dicarboxylic fatty acids, and primary fatty alcohols. Suberin also contains high amounts of glycerol and phenolics, especially ferulic acid. In addition, non-covalently linked waxes are likely associated with the suberin polymer. This review focusses on the suberin biosynthetic enzymes identified to date, which include β-ketoacyl-CoA synthases, fatty acyl reductases, long-chain acyl-CoA synthetases, cytochrome P450 monooxygenases, glycerol 3-phosphate acyltransferases, and phenolic acyltransferases. We also discuss recent advances in our understanding of the transport of suberin components intracellularly and to the cell wall, polymer assembly, and the regulation of suberin deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ASFT:

Aliphatic suberin feruloyl transferase

CoA:

Coenzyme A

CYP:

Cytochrome P450 monooxygenase

DCA:

α,ω-Dicarboxylic acid

ER:

Endoplasmic reticulum

FACT:

Fatty alcohol: caffeoyl-CoA caffeoyl transferase

FAR:

Fatty acyl reductase

FTH:

Suberin feruloyl transferase

GPAT:

Glycerol 3-phosphate acyltransferase

KCS:

β-Ketoacyl-CoA synthase

LACS:

Long-chain acyl-CoA synthetase

LTP:

Lipid transfer protein

References

  • Agrawal V, Kolattukudy P (1978) Purification and characterization of a wound-induced omega-hydroxy fatty acid:NADP oxidoreductase from potato tuber disks (Solanum tuberosum L.). Arch Biochem Biophys 191:452–465

    Article  CAS  PubMed  Google Scholar 

  • Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE (2009) Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 5:e1000492

    Article  PubMed Central  PubMed  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beisson F, Li-Beisson Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in the seed coat and root of Arabidopsis. Plant Cell 19:351–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beisson F, Li-Beisson Y, Pollard M (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15:329–337

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  CAS  Google Scholar 

  • Bernards MA, Lewis NG (1992) Alkyl ferulates in wound-healing potato-tubers. Phytochemistry 31:3409–3412

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA, Lopez ML, Zajeck J, Lewis NG (1995) Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin. J Biol Chem 270:7382–7386

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang X, Sabatino A, Plourde GL (1999) Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 121:135–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boher P, Serra O, Soler M, Molinas M, Figueras M (2013) The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. J Exp Bot 64:3225–3236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y (2011) An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65:181–193

    Article  CAS  PubMed  Google Scholar 

  • Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F (2009) CYP86B1 is required for very long chain ω-hydroxyacid and α,ω-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol 150:1831–1843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dean BB, Kolattukudy PE (1977) Biochemistry of suberization—incorporation of [1-C-14] oleic acid and [1-C-14] acetate into aliphatic components of suberin in potato tuber disks (Solanum tuberosum). Plant Physiol 59:48–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Domergue F, Vishwanath SJ, Joubès J, Ono J, Lee J, Bourdon M, Alhattab R, Lowe C, Pascal S, Lessire R, Rowland O (2010) Three Arabidopsis fatty acyl-CoA reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol 153:1539–1554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edstam MM, Edqvist J (2014) Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana. Physiol Plant 152:32–42

    Article  CAS  PubMed  Google Scholar 

  • Edstam MM, Blomqvist K, Eklöf A, Wennergren U, Edqvist J (2013) Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin. Plant Mol Biol 83:625–649

    Article  CAS  PubMed  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Article  Google Scholar 

  • Espelie KE, Kolattukudy PE (1985) Purification and characterization of an abscisic acid-inducible anionic peroxidase associated with suberization in potato (Solanum tuberosum). Arch Biochem Biophys 240:539–545

    Article  CAS  PubMed  Google Scholar 

  • Espelie KE, Sadek NZ, Kolattukudy PE (1980) Composition of suberin-associated waxes from the subterranean storage organs of seven plants, parsnip, carrot, rutabaga, turnip, red beet, sweet potato and potato. Planta 148:468–476

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Schreiber L (2007) Suberin—a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic polyesters in Arabidopsis surface tissues—a typical suberin and a particular cutin. Phytochemistry 66:2643–2658

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Hofer R, Briesen I, Emsermann M, Efremova N, Yephremov A, Schreiber L (2009) The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. Plant J 57:80–95

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Dombrink I, Schreiber L (2012) Suberin goes genomics: use of a short living plant to investigate a long lasting polymer. Front Plant Sci 3:1–8

    Article  Google Scholar 

  • Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  • Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, Vivancos J, Runavot JL, Quemener B, Petit J, Germain V, Rothan C, Marion D, Bakan B (2012) Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell 24:3119–3134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gou J-Y, Yu X-H, Liu C-J (2009) A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proc Natl Acad Sci USA 106:18855–18860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graça J, Pereira H (2000a) Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruroyl dimers. J Agri Food Chem 48:5476–5483

    Article  Google Scholar 

  • Graça J, Pereira H (2000b) Methanolysis of bark suberins: analysis of glycerol and acid monomers. Phytochem Anal 11:45–51

    Article  Google Scholar 

  • Graça J, Santos S (2006) Glycerol-derived ester oligomers from cork suberin. Chem Phys Lipids 144:96–107

    Article  PubMed  Google Scholar 

  • Haslam TM, Mañas-Fernández A, Zhao L, Kunst L (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59:2347–2360

    Article  PubMed Central  PubMed  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis—a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci USA 110:14498–14503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang MD, Chen TL, Huang AH (2013) Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol 163:1218–1229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC (2012) Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53:1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1981) Structure, biosynthesis and biodegradation of cutin and suberin. Annu Rev Plant Physiol 32:539–567

    Article  CAS  Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49

    CAS  PubMed  Google Scholar 

  • Kosma DK, Molina I, Ohlrogge JB, Pollard M (2012) Identification of an Arabidopsis fatty alcohol:caffeoyl-Coenzyme A acyltransferase required for the synthesis of alkyl hydroxycinnamates in root waxes. Plant Physiol 160:237–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R, Molina I, Rowland O (2014) AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J 80:216–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurdyukov S, Faust A, Nawrath C, Bar S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Metraux JP, Yephremov A (2006) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landgraf R, Smolka U, Altmann S, Eschen-Lippold L, Senning M, Sonnewald S, Weigel B, Frolova N, Strehmel N, Hause G, Scheel D, Böttcher C, Rosahl S (2014) The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell 26:3403–3415

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, Park OK, Suh MC (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462–475

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J (2007a) Identification of acyltransferases required for cutin synthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA 104:18339–18344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Ohlrogge J, Pollard M (2007b) Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin associated acyltransferase. Plant Physiol 144:1267–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TD, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    Article  PubMed Central  PubMed  Google Scholar 

  • Lü S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA (2009) Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564

    Article  PubMed  Google Scholar 

  • Matzke K, Reiderer R (1991) A comparative study into the chemical constitution of cutins and suberins from Picea abies (L.) Karst., Quercus robur L., and Fagus sylvatica L. Planta 185:233–245

    Article  CAS  PubMed  Google Scholar 

  • McFarlane HE, Watanabe Y, Yang W, Huang Y, Ohlrogge J, Samuels AL (2014) Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol 164:1250–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer CJ, Peterson CA, Bernards MA (2011) A comparison of suberin monomers from the multiseriate exodermis of Iris germanica during maturation under differing growth conditions. Planta 233:773–786

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  CAS  PubMed  Google Scholar 

  • Moire L, Schmutz A, Buchala A, Yan B, Stark RE, Ryser U (1999) Glycerol is a suberin monomer: new experimental evidence for an old hypothesis. Plant Physiol 119:1137–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molina I (2010) Biosynthesis of plant lipid polyesters. The AOCS lipid library. http://lipidlibrary.aocs.org/plantbio/polyesters/index.htm. Accessed July 2014

  • Molina I, Bonaventure G, Ohlrogge J, Pollard M (2006) The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry 67:2597–2610

    Article  CAS  PubMed  Google Scholar 

  • Molina I, Ohlrogge J, Pollard M (2008) Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Plant J 53:437–449

    Article  CAS  PubMed  Google Scholar 

  • Molina I, Beisson-Li Y, Beisson F, Ohlrogge J, Pollard M (2009) Identification of an Arabidopsis feruloyl-CoA transferase required for suberin synthesis. Plant Physiol 151:1317–1328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci USA 109:10101–10106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nawrath C (2002) The biopolymers cutin and suberin. Arabidopsis Book 1:e0021

    Article  PubMed Central  PubMed  Google Scholar 

  • Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L (2013) Apoplastic diffusion barriers in Arabidopsis. Arabidopsis Book 11:e0167

    Article  PubMed Central  PubMed  Google Scholar 

  • Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubès J (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. Plant J 73:733–746

    Article  CAS  PubMed  Google Scholar 

  • Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels LA (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    Article  CAS  PubMed  Google Scholar 

  • Pinto PCRO, Sousa AF, Silvestre AJD, Neto CP, Gandini A, Eckerman C, Holmbom B (2009) Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: a comparative study. Ind Crops Prod 29:126–132

    Article  CAS  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era—new interest for an old polymer. Plant Sci 180:399–413

    Article  CAS  PubMed  Google Scholar 

  • Razeq FM, Kosma DK, Rowland O, Molina I (2014) Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106:188–196

    Article  CAS  PubMed  Google Scholar 

  • Rowland O, Domergue F (2012) Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci 193–194:28–38

    Article  PubMed  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  CAS  PubMed  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553

    Article  CAS  PubMed  Google Scholar 

  • Schreiber L, Franke R, Hartmann K (2005) Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 220:520–530

    Article  CAS  PubMed  Google Scholar 

  • Serra O, Soler M, Hohn C, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009a) Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. J Exp Bot 60:697–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009b) CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol 149:1050–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M (2010) A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant J 62:277–290

    Article  CAS  PubMed  Google Scholar 

  • Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi U, Fujimoto M, Takanashi H, Ranathunge K, Franke RB, Shitan N, Nishizawa NK, Takamure I, Yano M, Tsutsumi N, Schreiber L, Yazaki K, Nakazono M, Kato K (2014) RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J 80:40–51

    Article  CAS  PubMed  Google Scholar 

  • Shockey JM, Fulda MS, Browse JA (2002) Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129:1710–1722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva S, Sabino M, Fernandes E, Correlo V, Boesel L, Reis R (2005) Cork: properties, capabilities and applications. Int Mater Rev 50:345–365

    Article  CAS  Google Scholar 

  • Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M (2007) A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144:419–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soliday CL, Kolattukudy PE, Davis RW (1979) Chemical and ultrastructural evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor in potato tuber (Solanum tuberosum L.). Planta 146:607–614

    Article  CAS  PubMed  Google Scholar 

  • Stark RE, Sohn W, Pacchiano RA, Albashir M, Garbow JR (1994) Following suberization in potato wound periderm by histochemical and solid-state C-13 nuclear-magnetic-resonance methods. Plant Physiol 104:527–533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas R, Fang X, Ranathunge K, Anderson TR, Peterson CA, Bernards MA (2007) Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiol 144:299–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vishwanath SJ, Kosma DK, Pulsifer IP, Scandola S, Pascal S, Joubès J, Dittrich-Domergue F, Lessire R, Rowland O, Domergue F (2013) Suberin-associated fatty alcohols in Arabidopsis thaliana: distributions in roots and contributions to seed coat barrier properties. Plant Physiol 163:1118–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW (2014) ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26:3569–3588

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J (2010) A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci USA 107:12040–12045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeats TH, Laetitia BB, Martin Viart HMF, Isaacson T, He Y, Zhao L, Matas AJ, Buda GJ, Domozych SD, Clausen MH, Rose JKC (2012) The identification of cutin synthase: formation of the plant polyester cutin. Nature Chem Biol 8:609–611

    Article  CAS  Google Scholar 

  • Yeats TH, Huang W, Chatterjee S, Viart HM, Clausen MH, Stark RE, Rose JK (2014) Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant J 77:667–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeier J, Schreiber L (1998) Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledoneous species: chemical composition in relation to fine structure. Planta 206:349–361

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nayana de Silva and Jessica White of Carleton University for valuable comments on the manuscript. SJV and OR were supported by the Natural Sciences and Engineering Research Council of Canada. CD was supported by a doctoral fellowship from the French Ministère de l’Enseignement Supérieur et de la Recherche.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Rowland.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwanath, S.J., Delude, C., Domergue, F. et al. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep 34, 573–586 (2015). https://doi.org/10.1007/s00299-014-1727-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1727-z

Keywords

Navigation