Skip to main content
Log in

Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

An NR-mediated early NO production in the shoots of hulless barley plays an important role in protecting hulless barley from Cu toxicity through enhanced antioxidant enzyme activities and antioxidant pools.

Abstract

Nitric oxide (NO) has been identified as an important signaling molecule that is involved in multiple plant physiological responses, especially under some abiotic stress. Here, we investigated NO production and its effects on copper (Cu) excess in hulless barley shoots. An early NO burst at 24 h was observed in shoots of hulless barley, and the synthesis of early NO was mediated through nitrate reductase (NR), but not through nitric oxide synthase (NOS). Application of the NO donor sodium nitroprusside (SNP) efficiently alleviated Cu-induced shoot inhibition and decrease in chlorophyll content, as well as oxidative damage and reactive oxygen species (ROS) accumulation, while inhibiting NO accumulation by a specific NO scavenger or a NR inhibitor aggravated shoot inhibition as well as the increase of hydrogen peroxide (H2O2) content, supporting the role of an NR-mediated early NO production in hulless barley responses to Cu toxicity. Furthermore, elevated antioxidant enzyme activities were induced by Cu stress in the shoots of hulless barley and further significantly enhanced by NO donor, whereas suppressed by NO scavenger or NR inhibitor. On the other hand, the application of NO scavenger significantly reduced Cu-induced accumulation of glutathione (GSH) and ascorbate (Asc) in the shoots of hulless barley. Taken together, our results indicate that NO may induce hulless barley seedling tolerance to Cu toxicity through modulating antioxidant enzyme activity and antioxidants accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Asc:

Ascorbate

APX:

Ascorbate peroxidase

CAT:

Catalase

cPTIO:

2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

DTT:

Dithiothreitol

FAD:

Flavin adenine dinucleotide

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

HbO2:

Oxyhemoglobin

H2O2 :

Hydrogen peroxide

MetHb:

Methemoglobin

L-NAME:

Nω-nitro-l-arginine methyl ester hydrochloride

MDA:

Malondialdehyde

NR:

Nitrate reductase

NOS:

Nitric oxide synthase

NO:

Nitric oxide

O2 :

Superoxide anion radical

POD:

Peroxidase

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

TCA:

Trichloroacetic acid

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ (1995) Heavy metal in soils, 2nd edn. Blackie Academic and Professional, London

    Book  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  CAS  PubMed  Google Scholar 

  • Chen LM, Kao CH (1999) Effect of excess copper on rice leaves: evidence for involvement of lipid peroxidation. Bot Bull Acad Sin 40:283–287

    CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Contreras L, Mella D, Moenne A, Correa JA (2009) Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquat Toxicol 94:94–102

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  PubMed  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanità di Toppi L, Lo Schiavo F (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  PubMed Central  PubMed  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Drazkiewicz M, Skórzyńska-Polit E, Krupa Z (2007) The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress. Chemosphere 67:188–193

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer CH, Rowell J, Walker D (1983) Measurements of the ascorbate content of spinach leaf protoplasts during illumination. Planta 157:239–244

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • González A, Cabrera Mde L, Henriquez MJ, Contreras RA, Morales B, Moenne A (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in U. compressa exposed to copper excess. Plant Physiol 158:1451–1462

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–221

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hu X, JiangM Zhang J, Zhang A, Lin F, Tan M (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    Article  CAS  PubMed  Google Scholar 

  • Iseri OD, Korpe DA, Yurtcu E, Sahin FI, Haberal M (2011) Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L. Plant Cell Rep 30:1713–1721

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Jannat R, Banu MN, Jahan MS, Nakamura Y, Murata Y (2009) Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Biosci Biotechnol Biochem 73:2320–2323

    Article  CAS  PubMed  Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu Y, Zhang J (2010) Advances in the research on the AsA–GSH cycle in horticultural crops. Front Agric China 4:84–90

    Article  Google Scholar 

  • Mackintosh C, Douglas D, Lillo C (1995) Identification of a protein that inhibits the phosphorylated form of nitrate reductase from spinach (Spinacia oleracea) leaves. Plant Physiol 107:451–457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Madejón P, Ramírez-Benítez JE, Corrales I, Barceló J, Poschenrieder C (2009) Copper-induced oxidative damage and enhanced antioxidant defenses in the root apex of maize cultivars differing in Cu tolerance. Environ Exp Bot 67:415–420

    Article  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorbal MH, Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Sci 127:129–137

    Article  CAS  Google Scholar 

  • Murphy ME, Noack E (1994) Nitric oxide assay using hemoglobin method. Methods Enzymol 233:240–250

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Pető A, Lehotai N, Feigl G, Tugyi N, Ördög A, Gémes K, Tari I, Erdei L, Kolbert Z (2013) Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. Plant Cell Rep 32:1913–1923

    Article  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Sun L, Lu W, Zhang J, Zhang W (1999) Investigation of barley germplasm in China. Genet Resour Crop Evol 46:361–369

    Article  Google Scholar 

  • Sun C, Lu L, Liu L, Liu W, Yu Y, Liu X, Hu Y, Jin C, Lin X (2014) Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol 201:1240–1250

    Article  CAS  PubMed  Google Scholar 

  • Tanyolaç D, Ekmekç Y, Unalan S (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67:89–98

    Article  PubMed  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith B (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol 121:453–461

    Article  CAS  Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Huang JJ, Liang WH, Liang XL, Bi YR (2013) Involvement of putrescine and nitric oxide in aluminum tolerance by modulating citrate secretion from roots of red kidney bean. Plant Soil 366:479–490

    Article  CAS  Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497:13–20

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Shi G, Ding C, Xu Y, Zhao J, Yang H, Pan Q (2011) Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regul 63:251–258

    Article  CAS  Google Scholar 

  • Yin YQ, Ma DQ, Ding Y (2003) Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet. Theor Appl Genet 107:837–842

    Article  CAS  PubMed  Google Scholar 

  • Yu CC, Hung KT, Kao CH (2005) Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves. J Plant Physiol 162:319–1330

    Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitrate reductase-mediated nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Open Funds for Key Laboratory of Mollisols Agroecology of Chinese Academy of Sciences and the National Nature Science Foundation of China (No.31301252).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Hu.

Additional information

Communicated by Kang Chong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., You, J. & Liang, X. Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley. Plant Cell Rep 34, 367–379 (2015). https://doi.org/10.1007/s00299-014-1715-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1715-3

Keywords

Navigation