Skip to main content
Log in

Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This study indicated that Ca 2+ , ROS and actin filaments were involved with CaM in regulating pollen tube growth and providing a potential way for overcoming pear self-incompatibility.

Abstract

Calmodulin (CaM) has been associated with various physiological and developmental processes in plants, including pollen tube growth. In this study, we showed that CaM regulated the pear pollen tube growth in a concentration-dependent bi-phasic response. Using a whole-cell patch-clamp configuration, we showed that apoplastic CaM induced a hyperpolarization-activated calcium ion (Ca2+) current, and anti-CaM largely inhibited this type of Ca2+ current. Moreover, upon anti-CaM treatment, the reactive oxygen species (ROS) concentration decreased and actin filaments depolymerized in the pollen tube. Interestingly, CaM could partially rescue the inhibition of self-incompatible pear pollen tube growth. This phenotype could be mediated by CaM-enhanced pollen plasma membrane Ca2+ current, tip-localized ROS concentration and stabilized actin filaments. These data indicated that Ca2+, ROS and actin filaments were involved with CaM in regulating pollen tube growth and provide a potential way for overcoming pear self-incompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biro RL, Daye S, Serlin BS, Terry ME, Datta N, Sopory SK, Roux SJ (1984) Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution. Plant Physiol 75:382–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boonburapong B, Buaboocha T (2007) Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol 7:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Ho THD (1986) Barley aleurone layers secrete a nuclease in response to gibberellic acid. Plant Physiol 82:801–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardennas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146:1611–1621

    Article  Google Scholar 

  • Del Duca S, Bregoli AM, Bergamini C, Serafini-Fracassini D (1997) Transglutaminase-catalyzed modification of cytoskeletal proteins by polyamines during the germination of Malus domestica pollen. Sex Plant Reprod 10:89–95

    Article  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Bonner P, Cresti M, Cai G (2009) Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem J 418:651–664

    Article  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Nasrallah JB (2001) Recognizing self in the self-incompatibility response. Plant Physiol 125:105–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiratsuka S, Zhang SL, Nakagawa E, Kawai Y (2001) Selective inhibition of the growth of incompatible pollen tubes by S-protein in the Japanese pear. Sex Plant Reprod 13:209–215

    Article  CAS  Google Scholar 

  • Huang S, Blanchoin L, Chaudhry F, Franklin-tong VE, Staiger CJ (2004) A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem 279:23364–23375

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  Google Scholar 

  • Lenartowska M, Rodriguez-Garcia M, Bednarska E (2001) Calmodulin and calmodulin-like protein are involved in pollen–pistil interaction: immunocytochemical studies on Petunia hybrida Hort. Acta Biol Cracov 43:117–123

    Google Scholar 

  • Liu ZQ, Xu GH, Zhang SL (2007) Pyrus pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen and tubes in vitro. Protoplasma 232:61–67

    Article  PubMed  Google Scholar 

  • Ma LG, Sun DY (1997) The effects of extracellular calmodulin on initiation of Hippeastrum rutilum pollen germination and tube growth. Planta 202:336–340

    Article  CAS  Google Scholar 

  • Ma LG, Xu XD, Cui SJ, Sun DY (1998) The involvement of phosphoinositide signaling pathway in the initiatory effects of extracellular calmodulin on pollen germination and tube growth. Acta Phytophysiol Sin 24:196–200

    CAS  Google Scholar 

  • Ma LG, Xu XD, Cui SJ, Sun DY (1999) The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell 11:1351–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma LG, Fan QS, Yu ZQ, Zhou HL, Zhang FS, Sun DY (2000) Does aluminum inhibit pollen germination via extracellular calmodulin? Plant Cell Physiol 41:372–376

    Article  CAS  PubMed  Google Scholar 

  • Malhó R, Read ND, Trewavas AJ, Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7:1173–1184

    PubMed Central  PubMed  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    Article  CAS  PubMed  Google Scholar 

  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu L-H, Obermeyer G, Feijó JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil d-serine. Sci Signal 332:434–437

    CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Potocky M, Jones MA, Bezvoda R, Smirnoff N, Žárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  CAS  PubMed  Google Scholar 

  • Qu HY, Shang ZL, Zhang SL, Liu LM, Wu JY (2007) Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytol 174:524–536

    Article  CAS  PubMed  Google Scholar 

  • Shang ZL, Ma LG, Zhang HL, He RR, Wang XC, Cui SJ, Sun DY (2005) Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM. Plant Cell Physiol 46:598–608

    Article  CAS  PubMed  Google Scholar 

  • Snowman BN, Kovar DR, Shevchenko G, Franklin-Tong VE, Staiger CJ (2002) Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14:2613–2626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun DY, Li HB, Cheng G (1994) Extracellular calmodulin accelerates the proliferation of suspension-cultured cells of Angelica dahurica. Plant Sci 99:1–8

    Article  CAS  Google Scholar 

  • Sun DY, Bian YQ, Zhao BH, Zhao LY, Yu XM, Duan SJ (1995) The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division. Plant Cell Physiol 36:133–138

    CAS  Google Scholar 

  • Sun Y, Liu DL, Yu ZQ, Zhang Q, Bai J, Sun DY (2003) An apoplastic mechanism for short-term effects of rare earth elements at lower concentrations. Plant Cell Environ 26:887–896

    Article  CAS  PubMed  Google Scholar 

  • Wang YF, Fan LM, Zhang WZ, Zhang W, Wu WH (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol 136:3892–3904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang CL, Xu GH, Jiang XT, Chen G, Wu J, Wu HQ, Zhang SL (2009) S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. Plant J 57:220–229

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Wu J, Xu GH, Gao Y, Chen G, Wu JY, Wu H, Zhang SL (2010) S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. J Cell Sci 123:4301–4309

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lv X, Li H, Zhang M, Wang H, Jin B, Chen T (2013) Inhibition of apoplastic calmodulin impairs calcium homeostasis and cell wall modeling during Cedrus deodara pollen tube growth. PLoS ONE 8:e55411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE (2011) Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of Papaver. Plant Physiol 156:404–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu JY, Shang ZL, Wu J, Jiang XT, Moschou PN, Sun WD, Roubelakis-Angelakis KA, Zhang SL (2010) Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Qu HY, Jin C, Shang ZL, Wu J, Xu GH, Gao YB, Zhang SL (2011) cAMP activates hyperpolarization-activated Ca2+ channels in the pollen of Pyrus pyrifolia. Plant Cell Rep 30:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH, Sun DY, Guo JF (1988) Preliminary study on wheat cell wall calmodulin. Chin Sci Bull 33:624–626

    Google Scholar 

  • Zhang SL, Hiratsuka S (1999) Variations in S-protein levels in styles of Japanese pears and the expression of self-incompatibility. J Japan Soc Hort Sci 68:911–918

    Article  CAS  Google Scholar 

  • Zhang SL, Hiratsuka S (2000) Cultivar and developmental differences in S-protein concentration and self-incompatibility in the Japanese pear. HortScience 35:917–920

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science of China (31,071,759, 31,230,063 and 31,272,119), Doctoral Fund of Ministry of Education of China (20120097120046), Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province (CX(11)1013, CX(13)3,010), National Natural Science Foundation of Jiangsu Province (BK2011067, BK2012366), and the Fundamental Research Funds for the Central Universities (KYRC201201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoling Zhang.

Additional information

Communicated by L. Jouanin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Gao, Y., Zhou, H. et al. Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia . Plant Cell Rep 33, 255–263 (2014). https://doi.org/10.1007/s00299-013-1526-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1526-y

Keywords

Navigation