Skip to main content
Log in

Wheat gene TaS3 contributes to powdery mildew susceptibility

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Identification of TaS3 as a potential susceptibility gene encoding a protein homologous to ULP1 protease in wheat, which may regulate SUMO function facilitating powdery mildew attack.

Abstract

Some plant genes that are required for susceptibilities to certain pathogens are known as susceptibility genes or susceptibility factors, whose loss-of-function mutations can confer the plants resistances. To identify potential susceptibility genes to powdery mildew in wheat, differentially expressed genes in compatible and incompatible interactions between wheat and powdery mildew were examined by the cDNA chip assay. The genes exclusively expressed in the susceptible cultivar were interfered using biolistic transient transformation in wheat epidermal cells. The suppression of gene TaS3 (Triticum aestivum susceptibility) decreased the pathogen penetration by 19 %, and its over-expression increased the disease susceptibility. The deduced protein from TaS3 belongs to the putative ubiquitin-like protease 1 peptidase domain family. Subcellular localization studies revealed that its protein was accumulated in the nucleus. Quantitative real-time polymerase chain reaction analysis revealed that TaS3 transcript was significantly induced in the compatible host. This suggests that TaS3 is a potential susceptible gene and its function may be related to regulate SUMO functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

qRT-PCR:

Quantitative real-time polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

TaS3 :

Triticum aestivum susceptibility

ULP1:

Ubiquitin-like protease 1

SUMO:

A small ubiquitin-related modifier

hpi:

Hour post inoculation

References

  • Aist JR, Bushnell WR (1991) Invasion of plant hosts by powdery mildew fungi and cellular mechanism of resistance. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum Press, New York, pp 321–345

    Chapter  Google Scholar 

  • Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop MN, Jones M, Ghesquière A (2006) Mutations in the eIF (iso) 4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J 47:417–426

    Article  PubMed  CAS  Google Scholar 

  • Baxter L, Tripathy S, Ishaque N et al (2010) Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330:1549–1551

    Article  PubMed  CAS  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102:3135–3140

    Article  PubMed  CAS  Google Scholar 

  • Burland TG (2000) DNASTAR’s laser gene sequence analysis software. Methods Mol Biol 132:71–91

    PubMed  CAS  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514–2528

    Article  PubMed  CAS  Google Scholar 

  • Caldo RA, Nettleton D, Peng J, Wise RP (2006) Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Mol Plant Microbe Interact 19:939–947

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Pendon JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5:223–233

    Article  PubMed  CAS  Google Scholar 

  • Dong WB, Nowara D, Schweizer P (2006) Protein polyubiquitination plays a role in basal host resistance of barley. Plant Cell 18:3321–3331

    Article  PubMed  CAS  Google Scholar 

  • Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe Interact 18:755–761

    Article  PubMed  CAS  Google Scholar 

  • Duplessis S, Cuomo CA, Lin YC et al (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108:9166–9171

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA (2002) In this issue: plant disease susceptibility genes? Plant Cell 14:1983–1986

    Article  PubMed  CAS  Google Scholar 

  • Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel KH (2004) Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed map kinase. Plant Mol Biol 55:1–15

    Article  PubMed  CAS  Google Scholar 

  • Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Duchkov D, Hensel G, Kumlehn J, Hückelhoven R (2010) BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol Plant Microbe Interact 23:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Elmore ZC, Donaher M, Matson BC, Murphy H, Westerbeck JW, Kerscher O (2011) Sumo-dependent substrate targeting of the SUMO protease Ulp1. BMC Biol. doi:10.1186/1741-7007-9-74

    PubMed  Google Scholar 

  • Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956

    PubMed  CAS  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373–378

    Article  PubMed  CAS  Google Scholar 

  • Fung RW, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249

    Article  PubMed  CAS  Google Scholar 

  • Green JR, Carver TLW, Gurr SJ (2002) The formation and function of infection and feeding structures. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. American Phytopathological Society (APS) Press, St. Paul, pp 66–82

  • Hanania U, Furman-Matarasso N, Ron M, Avni A (1999) Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J 19:533–541

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol 10:342–348

    Article  PubMed  CAS  Google Scholar 

  • Hickey CM, Wilson NR, Hochstrasser M (2012) Function and regulation of SUMO proteases. Mol Cell Biol 13:755–766

    CAS  Google Scholar 

  • Hoefle C, Loehrer M, Schaffrath U, Frank M, Schultheiss H, Hückelhoven R (2009) Transgenic suppression of cell death limits penetration success of the soybean rust fungus Phakopsora pachyrhizi into epidermal cells of barley. Phytopathology 99:220–226

    Article  PubMed  CAS  Google Scholar 

  • Hoefle C, Huesmann C, Schultheiss H, Börnke F, Hensel G, Kumlehn J, Hückelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23:2422–2439

    Article  PubMed  CAS  Google Scholar 

  • Hotson A, Mudgett MB (2004) Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7:384–390

    Article  PubMed  CAS  Google Scholar 

  • Hotson A, Chosed R, Shu H, Orth K, Mudgett MB (2003) Xanthomonas type III efector XopD targets SUMO-conjugated proteins in planta. Mol Microbiol 50:377–389

    Article  PubMed  CAS  Google Scholar 

  • Hu DW, Li ZQ, Kang ZS (1997) Cytological studies on development and primary infection of Erysiphe graminis f. sp. tritici in wheat. Acta Univ Agric Boreali Occidentalia 25:1–7

    Google Scholar 

  • Huang X, Wang G, Shen YZ, Huang ZJ (2012) The wheat gene TaST can increase the salt tolerance of transgenic Arabidopsis. Plant Cell Rep 31:339–347

    Article  PubMed  CAS  Google Scholar 

  • Huang CJ, Hu GJ, Li FF, Li YQ, Wu JX, Zhou XP (2013) NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana. Physiol plantarum. doi:10.1111/ppl.12031

    Google Scholar 

  • Hückelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17

    Article  PubMed  Google Scholar 

  • Hückelhoven R, Panstruga R (2011) Cell biology of the plant-powdery mildew interaction. Curr Opin Plant Biol 14:738–746

    Article  PubMed  Google Scholar 

  • Hückelhoven R, Dechert C, Kogel KH (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci USA 100:5555–5560

    Article  PubMed  Google Scholar 

  • Humphry M, Consonni C, Panstruga R (2006) Mlo-based powdery mildew immunity: silver bullet or simply nonhost resistance? Mol Plant Pathol 7:605–610

    Article  PubMed  Google Scholar 

  • Jørgensen JH (1992) Discovery, characterization and exploitation of mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Jørgensen JH (1994) Genetics of powdery mildew resistance in barley. Plant Sci 13:97–119

    Google Scholar 

  • Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405

    Article  PubMed  CAS  Google Scholar 

  • Kemen E, Jones JDG (2012) Obligate biotroph parasitism: can we link genomes to lifestyles? Trends Plant Sci 17:448–457

    Article  PubMed  CAS  Google Scholar 

  • Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, MacLean D, Jones JDG (2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol 9:1–21

    Article  Google Scholar 

  • Kim J, Taylor KW, Hotson A, Keegan M, Schmelz EA, Mudgett MB (2008) XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell 20:1915–1929

    Article  PubMed  CAS  Google Scholar 

  • Kristensen BK, Ammitzboll H, Rasmussen SK, Nielsen KA (2001) Transient expression of a vacuolar peroxidase increases susceptibility of epidermal barley cells to powdery mildew. Mol Plant Pathol 2:311–317

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278:6862–6872

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Leath S, Heun M (1990) Identification of powdery mildew resistance genes in cultivars of soft red winter wheat. Plant Dis 74:747–752

    Article  Google Scholar 

  • Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    Article  PubMed  CAS  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11:404–411

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lois LM, Lima CD, Chua NH (2003) Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15:1347–1359

    Article  PubMed  CAS  Google Scholar 

  • Lyngkjaer MF, Newton AC, Atzema JL, Baker SJ (2000) The barley mlo-gene: an important powdery mildew resistance source. Agronomie 20:745–756

    Article  Google Scholar 

  • Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM (2009) Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J 59:150–162

    Article  PubMed  CAS  Google Scholar 

  • Meijer LK, Schesser K, Wolf-Watz H, Sassone-Corsi P, Pettersson S (2000) The bacterial protein YopJ abrogates multiple signal transduction pathways that converge on the transcription factor CREB. Cell Microbiol 2:231–238

    Article  PubMed  CAS  Google Scholar 

  • Melchoir F (2000) SUMO-nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626

    Article  Google Scholar 

  • Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cells 5:865–876

    Article  CAS  Google Scholar 

  • Murtas G, Reeves PH, Fu YF, Bancroft I, Dean C, Coupland G (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of small ubiquitinrelated modifier conjugates. Plant Cell 15:2308–2319

    Article  PubMed  CAS  Google Scholar 

  • Mysore KS, Crasta OR, Tuori RP, Folkerts O, Swirsky PB, Martin GB (2002) Comprehensive transcript profiling of Pto- and Prf-mediated host defense response to infection by Pseudomonas syringae pv. tomato. Plant J 32:299–315

    Article  PubMed  CAS  Google Scholar 

  • Nicaise V, German-Retana S, Sanjuan R, Dubrana MP, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol 132:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomènech P, Pitrat M, Caboche M, Dogimont C, Garcia-Mas J, Aranda MA, Bendahmane A (2006) An eIF4E allele confers resistance to an uncapped and nonpolyadenylated RNA virus in melon. Plant J 48:452–462

    Article  PubMed  CAS  Google Scholar 

  • Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969–972

    Article  PubMed  CAS  Google Scholar 

  • Noel L, Thieme F, Nennstiel D, Bonas U (2002) Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol 184:1340–1348

    Article  PubMed  CAS  Google Scholar 

  • O’Connell JR, Panstruga R (2006) Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171:699–718

    Article  PubMed  Google Scholar 

  • Orth K (2002) Function of the yersinia effector YopJ. Curr Opin Microbiol 5:38–43

    Article  PubMed  CAS  Google Scholar 

  • Orth K, Xu ZH, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290:1594–1597

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6:320–326

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R (2005) Serpentine plant mlo proteins as entry portals for powdery mildew fungi. Biochem Soc Trans 33:389–392

    Article  PubMed  CAS  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013) Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat. Plant J 73:521–532

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Kim WY, Park HC, Lee SY, Bohnert HJ, Yun DJ (2011) SUMO and SUMOylation in plants. Mol Cells 32:305–316

    Article  PubMed  CAS  Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai YL (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed  Google Scholar 

  • Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D’Hont A, Hollricher K, Jørgensen JH, Paul Schulze-Lefert P, Panstruga R (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430:887–891

    Article  PubMed  CAS  Google Scholar 

  • Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RHY, Zody MC, Kunjeti SG, Donofrio NM, Meyers BC, Nusbaum C, Kamoun C (2010) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330:1540–1543

    Article  PubMed  CAS  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    Article  PubMed  CAS  Google Scholar 

  • Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol 145:119–134

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson RS, Wilson IW, Somerville SC, Maclean DJ (2003) Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol 132:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Hückelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128:1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Hückelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J 36:589–601

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert P, Vogel J (2000) Closing the ranks to attack by powdery mildew. Trends Plant Sci 5:343–348

    Article  PubMed  CAS  Google Scholar 

  • Schweizer P, Christoffel A, Dudler R (1999a) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 50:541–552

    Article  Google Scholar 

  • Schweizer P, Pokorny J, Abderhalden O, Dudler R (1999b) A transient assay system for the functional assessment of defense-related genes in wheat. Mol Plant Microbe Interact 12:647–654

    Article  CAS  Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000a) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895–903

    Article  PubMed  CAS  Google Scholar 

  • Schweizer P, Kmecl A, Carpita N, Dudler R (2000b) A soluble carbohydrate elicitor from Blumeria graminis f. sp. tritici is recognized by a broad range of cereals. Physiol Mol Plant Pathol 56:157–167

    Article  CAS  Google Scholar 

  • Shinshi H, Neuhaus JM, Ryals J, Meins F Jr (1990) Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cystein-rich domain. Plant Mol Biol 14:357–368

    Article  PubMed  CAS  Google Scholar 

  • Smith M, Bhaskar V, Fernandez J, Courey AJ (2004) Drosophila Ulp1, a nuclear pore-associated SUMO protease, prevents accumulation of cytoplasmic SUMO conjugates. J Biol Chem 279:43805–43814

    Article  PubMed  CAS  Google Scholar 

  • Spanu PD, Abbott JC, Amselem J et al (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang DZ, Innes RW (2002) Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J 32:975–983

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou GZ, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringe. Plant Cell 15:317–330

    Article  PubMed  CAS  Google Scholar 

  • Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4:137–142

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci USA 97:1897–1902

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Raab TK, Schiff C, Somerville SC (2002) PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14:2095–2106

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40:968–978

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Zhang ZS (1998) Occurrence degree and epidemic dynamics of powdery mildew on winter wheat varieties in Henan Province. Plant Protect 24:6–9

    CAS  Google Scholar 

  • Wang XF, Zhang ZS, Liu HY, He WL (1996) Evaluation of resistance and slow-mildewing of some wheat varieties in Henan Province. Acta Agric Univ Henanensis 30:160–163

    Google Scholar 

  • Winzeler M, Streckeisen P, Fried PM (1991) Virulence analysis of the wheat powdery mildew population in Switzerland between 1980 and 1989. In: Jørgensen JH (ed) Integrated control of cereal mildews: virulence patterns and their change. Risoe, Denmark, pp 15–21

  • Xiong RY, Wu JX, Zhou YJ, Zhou XP (2009) Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology 387:29–40

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Bo Zhou, Dr. Xueping Zhou for the gift of pENTR™, pANDA-mini and pCHF3-GFP, respectively. We appreciate Dr. Hongyan Liu for the seeds of Yumai 13, Hongyou and Chiyacao, and Dr. Zhenghe Li for providing the RFP-H2B tobacco seeds. Yunqin Li supplied technical assistance in confocal laser microscopy. This work was supported by grants of the National Natural Science Foundation of China (Grant No. 30871609), the Special Fund for Agro-scientific Research in the Public Interest (201303016) and Sino-Swiss Science and Technology Cooperation (SSSTC) (Grant No. EG10-032010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwei Hu.

Additional information

Communicated by J. Register.

S. Li and R. Ji contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Ji, R., Dudler, R. et al. Wheat gene TaS3 contributes to powdery mildew susceptibility. Plant Cell Rep 32, 1891–1901 (2013). https://doi.org/10.1007/s00299-013-1501-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1501-7

Keywords

Navigation