Skip to main content
Log in

Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We report global gene expression patterns of poplar in response to chilling stress. A total of 1,085 significantly differentially expressed genes, involved in photosynthesis, signal transduction, and regulation of transcription, were identified.

Abstract

To understand the gene network underlying the response to chilling stress in the poplar, Populus simonii, we determined the genome transcript expression profile using an Affymetrix GeneChip with 56,000 genes. Our results revealed 11,626 cold-responsive genes, with 5,267 upregulated and 6,359 downregulated. In terms of biological processes, gene ontology (GO) analysis indicated that cold-induced genes were enriched in response to temperature stimulus, reactive oxygen species, and hormone stimulus. GO terms including cellular nitrogen compound metabolic processes, photosynthesis, and generation of precursor metabolites and energy were enriched in the cold-repressed genes. The functional annotation of differentially expressed genes revealed genes involved in photosynthesis, calcium/calmodulin-mediated signal transduction, abscisic acid (ABA) homeostasis and transport, and antioxidant defense systems. Gene expression analysis showed that the majority of genes involved in photosynthesis were repressed, but the THF1 gene was induced, suggesting that it may play an important role in the production of vesicles for leaf development under low-temperature conditions. Several genes involved in calcium/calmodulin-mediated signal transduction, ABA homeostasis and transport, and antioxidant defense systems were significantly induced under chilling stress, suggesting that they may act as positive regulators in the enhanced low-temperature tolerance of poplar. Several transcription factors had divergent expression patterns, suggesting they have variable functional responses to abiotic stress. This profile of global gene expression patterns during chilling stress will be valuable for future studies on the molecular mechanisms of chilling tolerance in woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albrecht V, Wein S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu Ü, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Baron K, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59

    Article  PubMed  Google Scholar 

  • Chen JH, Xia XL, Yin WL (2009) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commu 378:483–487

    Article  CAS  Google Scholar 

  • Chen LG, Song Y, Li SJ, Zhang LP, Zou CS, Yu DQ (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  PubMed  CAS  Google Scholar 

  • Chinpongpanich A, Limruengroj K, Phean-o-pas S, Limpaseni T, Buaboocha T (2012) Expression analysis of calmodulin and calmodulin-like genes from rice, Oryza sativa L. BMC Res Notes 5:625

    Article  PubMed  CAS  Google Scholar 

  • De Silva K, Laska B, Brown C, Sederoff HW, Khodakovskaya M (2010) Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. J Exp Bot 62:2679–2689

    Article  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    Article  CAS  Google Scholar 

  • Ding M, Hou P, Shen X, Wang M, Deng S, Sun J, Xiao F, Wang R, Zhou X, Lu C, Zhang D, Zheng X, Hu Z, Chen S (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269

    Article  PubMed  CAS  Google Scholar 

  • Earley K, Smith MR, Weber R, Gregory BD, Poethig RS (2010) An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence 1:15

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1995) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Google Scholar 

  • Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ (2005) The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J Biol Chem 280:12168–12180

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperature: review. Plant Physiol Biochem 40:659–668

    Article  CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    Article  PubMed  CAS  Google Scholar 

  • Furukawa Y, Torres AS, O’Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881

    Article  PubMed  CAS  Google Scholar 

  • Hausman JF, Evers D, Thiellement H, Jouve L (2000) Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments. Plant Cell Rep 19:954–960

    Article  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  PubMed  CAS  Google Scholar 

  • Hiraga S, Sasaki K, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  PubMed  CAS  Google Scholar 

  • Huang CH, Kuo WY, Weiss C, Jinn T (2012) Copper chaperone-dependent and -independent activation of three copper–zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis. Plant Physiol 158:737–746

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150

    Article  PubMed  Google Scholar 

  • Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21:2624–2641

    Article  PubMed  CAS  Google Scholar 

  • Karimzadeh G, Sharifi-Sirchi GR, Jalali-Javaran M, Dehghani H, Francis D (2006) Soluble proteins induced by low temperature treatment in the leaves of spring and winter wheat cultivars. Pak J Bot 38:1015–1026

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    PubMed  CAS  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Krishnan A, Pereira A (2008) Integrative approaches for mining transcriptional regulatory programs in Arabidopsis. Brief Funct Genomic Proteomic 7:264–274

    Article  PubMed  CAS  Google Scholar 

  • Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schöttler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ (2006) Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 45:968–981

    Article  PubMed  CAS  Google Scholar 

  • Li C, Puhakainen T, Welling A, Vihera-Aarnino A, Ernstsen A, Junttila O, Heino P, Palva ET (2002) Cold acclimation in silver birch (Betula pendula). Development of freezing tolerance in different tissues and climatic ecotypes. Plant Physiol 116:478–488

    Article  CAS  Google Scholar 

  • Li C, Junttila O, Heino P, Palva ET (2003) Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol 23:481–487

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Fu QT, Chen LG, Huang WD, Yu DQ (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  PubMed  CAS  Google Scholar 

  • Livingston AK, Cruz JA, Kohzuma K, Dhingr A, Kramera DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233

    Article  PubMed  CAS  Google Scholar 

  • Maestrini P, Cavallini A, Rizzo M, Giordani T, Bernardi R, Durante M, Natali L (2009) Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). J Plant Physiol 166:1544–1556

    Article  PubMed  CAS  Google Scholar 

  • Marian CO, Krebs SL, Arora R (2004) Dehydrin variability among rhododendron species: a 25 kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol 161:773–780

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meure J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  PubMed  CAS  Google Scholar 

  • Nie GY, Long SP, Baker NR (1992) The effects of development at sub-optimal growth temperatures on photosynthetic capacity and susceptibility to chilling- dependent photoinhibition in Zea mays. Physiol Plant 85:554–560

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  PubMed  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Renaut J, Lutts S, Hoffmann L, Hausman JF (2004) Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol 6:81–90

    Article  PubMed  CAS  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Perry Gustafson J (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  PubMed  CAS  Google Scholar 

  • Romeis T, Ludwig AA, Matin R, Jones JDJ (2001) Calcium-dependent protein kinase plays an essential role in a plant defense response. EMBO J 20:5556–5567

    Article  PubMed  CAS  Google Scholar 

  • Song YP, Ma KF, Bo WH, Zhang ZY, Zhang DQ (2012) Sex-specific DNA methylation and gene expression in andromonoecious poplar. Plant Cell Rep 31:1393–1405

    Article  PubMed  CAS  Google Scholar 

  • Street NR, Skogstrőm O, Sjődin A, Tucker J, Rodríguez-Acosta M, Nilsson P, Jansson S, Taylor G (2006) The genetics and genomics of the drought response in Populus. Plant J 48:321–324

    Article  PubMed  CAS  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Nakashima L, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mo1 Gen Genet 224:331–340

    Google Scholar 

  • Wang Q, Sullivan RW, Kight A, Henry RL, Huang JR, Jones AM, Korth KL (2004) Deletion of the chloroplast-localized thylakoid formation 1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol 136:3594–3604

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Du Q, Zhang J, Li B, Zhang D (2012) Genetic diversity and population structure in Chinese indigenous poplar (Populus simonii) populations using microsatellite markers. Plant Mol Biol Reporter doi:10.1007/s11105-012-0527-2

  • Wilkins O, Waldron L, Nahal H, Provart NJ, Campbell MM (2009) Genotype and time of day shape the Populus drought response. Plant J 60:703–715

    Article  PubMed  CAS  Google Scholar 

  • Yang TB, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 18:505–512

    Article  Google Scholar 

  • You MK, Shin HY, Kim YJ, Ok SH, Cho SK, Jeung JU, Yoo SD, Kim JK, Shin JS (2010) Novel bifunctional nucleases, OmBBD and AtBBD1, are involved in abscisic acid-mediated callose deposition in Arabidopsis. Plant Physiol 152:1015–1029

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Mol Biol 39:439–473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the following sources: the Forestry Public Benefic Research Program (No. 201204306), Project of the National Natural Science Foundation of China (No. 30600479, 30872042), and Program for New Century Excellent Talents in University (No. NCET-07-0084). We are grateful for the sequence information produced by the U.S. Department of Energy Joint Genome Institute (http://www.jgi.doe.gov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Zhang.

Additional information

Communicated by J. S. Shin.

Y. Song and Q. Chen contributed equally to this work.

All samples were uploaded to Gene Expression Omnibus (http://www.ncbi.nlm.nih.ov/geo/) Accession no. GSE43872.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Chen, Q., Ci, D. et al. Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii . Plant Cell Rep 32, 1407–1425 (2013). https://doi.org/10.1007/s00299-013-1454-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1454-x

Keywords

Navigation