Skip to main content
Log in

Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that play vital roles in plant abiotic stress responses via cleavage or translational inhibition of their target mRNAs. Populus euphratica is a typical stress-resistant sessile organism that grows in desert areas. Here, we identified sequences of 12 miRNA precursors from 11 families and 13 mature miRNAs from 12 families by PCR amplification in P. euphratica. To detect expression differences in mature miRNAs and their precursors under dehydration and high salinity shock in P. euphratica, we examined 14 miRNA precursors from 13 miRNA families and 17 mature miRNAs from 17 miRNA families using the SYBR Green RT–PCR assay. This is the first report of expression profiles for both precursor and mature miRNAs in P. euphratica. By profiling both the mature miRNAs and the precursors under abiotic stress shock, it was possible to identify miRNA whose processing is regulated during stress shock environments. A majority of the genes predicted to be targets for plant miRNAs are involved in development, stress resistance and metabolic processes. We have cloned and experimentally identified in vivo five of the predicted target genes and quantified the five target mRNAs from the same RNA sample simultaneously. Based on this study, we propose some regulatory pathways that illustrate the important role that miRNAs play in response to abiotic stress shock in P. euphratica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzó M, García-Foncillas J (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29

    Article  PubMed  Google Scholar 

  • Barakat A, Wall KP, DiLoreto S, Pamphilis CW, Carlson JE (2007) Conservation and divergence of microRNAs in Populus. BMC Genomics 8:481

    Article  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen X (2004) A microRNA as translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu N, Mahuvakar VR, Andersen MR, Lao K, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucl Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Chen J, Xia X, Yin W (2009) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521

    Article  PubMed  CAS  Google Scholar 

  • Chung WS, Lee SH, Kim JC, Heo WD, Kim MC, Park CY, Park HC, Lim CO, Kim WB, Harper JF, Choa MJ (2000) Identification of a calmodulin-regulated Soybean Ca2+-ATPase (SCA1) that is located in the plasma membrane. Plant Cell 12:1393–1407

    Article  PubMed  CAS  Google Scholar 

  • Combier JP, Frugier F, Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  PubMed  CAS  Google Scholar 

  • Fattash I, Voß B, Reski R, Hess WR, Frank W (2007) Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7:13

    Article  PubMed  Google Scholar 

  • Feng J, Wang K, Liu X, Chen S, Chen J (2009) The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene 437:14–21

    Article  PubMed  CAS  Google Scholar 

  • Gu RS, Liu QL, Pei D, Jiang XN (2004) Understanding saline and osmotic tolerance of Populus euphratica suspended cells. Plant Cell Tissue Organ Cult 78:261–265

    Article  CAS  Google Scholar 

  • Hasson A, Plessis A, Blein T, Adroher B, Grigg S, Tsiantis M, Boudaoud A, Damerval C, Laufs P (2011) Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell 23:54–68

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucl Acids Res 33:5394–5403

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Seo PJ, Park CM (2009) MicroRNA biogenesis and function in higher plants. Plant Biotechnol Rep 3:111–126

    Article  Google Scholar 

  • Kariola T, Brader G, Helenius E, Li J, Heino P, alva ET (2006) Early responsive to dehydration 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol 142:1559–1573

    Article  PubMed  CAS  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, Carrington JC, Ahn JH (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucl Acids Res 38:3081–3093

    Article  PubMed  CAS  Google Scholar 

  • Li W, Oono Y, Zhu J, He X, Wu J, Iida K, Lu X, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  PubMed  CAS  Google Scholar 

  • Li B, Yin W, Xia X (2009a) Identification of microRNAs and their targets from Populus euphratica. Biochem Biophys Res Commu 388:272–277

    Article  CAS  Google Scholar 

  • Li H, Zhang Z, Huang F, Chang L, Ma Y (2009b) MicroRNA expression profiles in conventional and micropropagated strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 28:891–902

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( 2^{{ - \Updelta \Updelta C_{\text{t}} }} \) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun Y, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 171:2186–2203

    Article  Google Scholar 

  • Lu S, Sun Y, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Liang D, Shuai P, Xia X, Yin W (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019

    Article  PubMed  CAS  Google Scholar 

  • Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

    Article  PubMed  CAS  Google Scholar 

  • Martin RC, Liu PP, Goloviznina NA, Nonogaki H (2010) MicroRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot 61:2229–2234

    Article  PubMed  CAS  Google Scholar 

  • Ottow EA, Polle A, Brosche M, Kangasjarvi J, Dibrov P, Zorb C, Teichmann T (2005) Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol Biol 58:75–88

    Article  PubMed  CAS  Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R, Ranty B (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J 38:410–420

    Article  PubMed  CAS  Google Scholar 

  • Phillips JR, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucl Acids Res 32:e43

    Article  PubMed  Google Scholar 

  • Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44:31–38

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics 284:477–488

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shukla LI, Chinnusamv V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta 1779:743–748

    PubMed  CAS  Google Scholar 

  • Sofo A, Dichio B, Xinoyannis C, Masia A (2005) Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct Plant Biol 32:45–53

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu JH, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Hajkova P, Barton SC, Lao K, Surani MA (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucl Acids Res 34:e9

    Article  PubMed  Google Scholar 

  • Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS (2011) MiRNA control of vegetative phase change in trees. PLoS Genet 7:e1002012

    Article  PubMed  CAS  Google Scholar 

  • Willmann MR, Poethig RS (2007) Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol 10:503–511

    Article  PubMed  CAS  Google Scholar 

  • Xie ZX, Khanna K, Ruan S (2010) Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol 21:790–797

    Article  PubMed  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucl Acids Res 33:w701–w704

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought- induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. Mol Biol 10:29

    Google Scholar 

Download references

Acknowledgments

This work was supported by the “948” Project of the State Forestry Administration of China (2007-4-01), the National Natural Science Foundation of China (No. 30730077, 30972339, 31070597), the Program for New Century Excellent Talents in University of China (NCET-07-0083) and National Key Technologies R&D Program of China (2011BAD38B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinli Xia or Weilun Yin.

Additional information

Communicated by R. Reski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 115 kb)

Supplementary material 2 (XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Duan, Z., Xia, X. et al. Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica . Plant Cell Rep 30, 1893–1907 (2011). https://doi.org/10.1007/s00299-011-1096-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1096-9

Keywords

Navigation