Skip to main content
Log in

Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Chitooligosaccharide (COS) or oligochitosan has been shown to induce tobacco defense responses which are connected with nitric oxide (NO) and OIPK (oligochitosan-induced Ser/Thr protein kinase). The aim of this study was to reveal the relationship between NO production and OIPK pathway in the defense response of tobacco elicited by COS. NO generation was investigated by epidermal strip bioassay and fluorophore microscope using fluorophore diaminofluorescein diacetate (DAF-2DA). Tobacco epidermal cells treated with COS resulted in production of NO, which was first present in chloroplast, then in nucleus, finally in the whole cell; this NO production was sensitive to NO scavenger cPTIO and the mammalian NO synthase (NOS) inhibitor l-NAME, suggesting that NOS-like enzyme maybe involved in NO generation in tobacco epidermal cells. However, NOS and nitrate reductase (NR, EC 1.6.6.1) inhibitors reduced NO content in tobacco leaves by using NO Assay Kit, suggesting both NOS and NR were involved in NO production in tobacco leaves. Using a pharmacological approach and western blotting, we provide evidence that NO acts upstream of OIPK expression. NO scavenger, NOS inhibitor partly blocked the activation of OIPK and the activities of several defense-related enzymes induced by COS; treatment with NO donor sodium nitroprusside (SNP) induced the activation of OIPK and enhanced the defense systems. The results suggest that COS is able to induce NO generation, which results in up-regulation the activities of some defense-related enzymes through an OIPK-dependent or independent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–1095

    Article  PubMed  CAS  Google Scholar 

  • Arisan NP-UD et al (2009) Nitric oxide signalling in plants. Bot Rev 75:203–229

    Article  Google Scholar 

  • Asai S, Ohta K et al (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    Article  PubMed  CAS  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM et al (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    Article  PubMed  CAS  Google Scholar 

  • Bautista-Banos S, Hernandez-Lauzardo AN et al (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25:108–118

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Ann Rev Plant Biol 59:21–39

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB et al (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  PubMed  CAS  Google Scholar 

  • Cueto M, HernandezPerera O et al (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia YJ et al (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Doares SH, Syrovets T et al (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci 92:4095–4098

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D et al (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Feng B, Chen Y, Zhao C, Zhao X, Bai X, Du Y (2006) Isolation of a novel Ser/Thr protein kinase gene from oligochitosan-induced tobacco and its role in resistance against tobacco mosaic virus. Plant Physiol Biochem 44:596–603

    Article  PubMed  CAS  Google Scholar 

  • Foissner I, Wendehenne D et al (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  PubMed  CAS  Google Scholar 

  • Gas E, Flores-Pérez U, Sauret-Güeto S, Rodríguez-Concepcióna M (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger LA (1999) Host–parasite interactions: elicitation of defense responses in plants with chitosan. Exs 87:185–200

    PubMed  CAS  Google Scholar 

  • Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ (2008) Nitric oxide function and signalling in plant disease resistance. J Exp Bot 59:147–154

    Article  PubMed  CAS  Google Scholar 

  • Hu XY, Neill SJ, Cai WM (2003) NO-mediated hypersensitive responses of rice suspension cultures induced by incompatible elicitor. Chin Sci Bull 48:358–363

    CAS  Google Scholar 

  • James F, Kerwin Jr (1995) Advances in NOS inhibitors and NO-based therapeutics. Curr Pharm Des 1:507–532

    Google Scholar 

  • Jayaraj J, Rahman M et al (2009) Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Ann Appl Biol 155:71–80

    Article  CAS  Google Scholar 

  • Kelner A, Pekala I et al (2004) Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress. Plant Physiol 136:3255–3265

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Rajapakse N (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym 62:357–368

    Article  CAS  Google Scholar 

  • Kojima H, Nakatsubo N et al (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K et al (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yin H, Wang Q, Zhao X, Du Y, Li F (2009) Oligochitosan induced Brassica napus L. production of NO and H2O2 and their physiological function. Carbohydr Polym 75:612–617

    Article  CAS  Google Scholar 

  • Lin W, Hu X et al (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G et al (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  PubMed  CAS  Google Scholar 

  • Mur LAJ, Santosa IE et al (2005) Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars. Plant Physiol 138:1247–1258

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Ozeretskovskaya OL, Varlamov VP et al (2004) Influence of systemic signal molecules on the rate of spread of the immunizing effect of elicitors over potato tissues. Appl Biochem Microbiol 40:213–216

    Article  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML et al (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  PubMed  CAS  Google Scholar 

  • Rockel P, Strube F et al (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Campostrini N et al (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469

    Article  PubMed  CAS  Google Scholar 

  • Rusterucci C, Espunya MC et al (2007) S-Nitrosoglutathione reductase affords protection against pathogens in arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    Article  PubMed  CAS  Google Scholar 

  • She XP, Song XG (2008) Pharmacological evidence indicates that MAPKK/CDPK modulate NO levels in darkness-induced stomatal closure of broad bean. Aust J Bot 56:347–357

    Article  CAS  Google Scholar 

  • Sokolovski S, Hills A et al (2005) Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J 43:520–529

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Spoel SH et al (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  PubMed  CAS  Google Scholar 

  • Tian QY, Sun DH et al (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    Article  PubMed  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C et al (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  PubMed  CAS  Google Scholar 

  • Vanin AF, Svistunenko DA, Mikoyan VD, Serezhenkov VA, Fryer MJ et al (2004) Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves. J Biol Chem 279:24100–24107

    Article  PubMed  CAS  Google Scholar 

  • Wang YQ, Yun BW, Kwon E, Hong JK, Yoon J, Loake G (2006) S-Nitrosylation: an emerging redox-based post-translational modification in plants. J Exp Bot 57:1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Xu MJ, Dong JF, Zhu MY (2005) Nitric oxide mediates the fungal elicitor-induced hypericin production of hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiol 139:991–998

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Zhao X, Han X, Du Y (2007) Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochem Physiol 87:220–228

    Article  CAS  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci 11:522–524

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 46:89–92

    Article  Google Scholar 

  • Yin H, Zhao XM, Du YG (2010) Oligochitosan: a plant diseases vaccine-A review. Carbohydr Polym 82:1–8

    Article  CAS  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci 101:15811–15816

    Article  PubMed  CAS  Google Scholar 

  • Zhang SQ, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, She X, Du Y, Liang X (2007a) Induction of antiviral resistance and stimulatory effect by oligochitosan in tobacco. Pestic Biochem Physiol 87:78–84

    Article  CAS  Google Scholar 

  • Zhao X, She X, Yu W, Liang X, Du Y (2007b) Effects of oligochitosans on tobacco cells and role of endogenous nitric oxide burst in the resistance of tobacco to tobacco mosaic virus. J Plant Pathol 89:55–65

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Hi-Tech Research and Development Program of China (Nos. 2006AA10A213 and 2007AA091601), the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-YW-G-041 and No. KSCX2-YW-N-007), Natural Science Fund of Liaoning province (No. 20082153), National Department Public Benefit Research Foundation of China (No. 200903052), Special Funds for Scientific Research on Public Causes in Agriculture (200903052), and Scientific and Technological Major Special Project “Significant Creation of New Drugs”(2009ZX9501-011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Zhao or Yuguang Du.

Additional information

Communicated by J. Zou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhao, X., Yang, J. et al. Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. Plant Cell Rep 30, 1153–1162 (2011). https://doi.org/10.1007/s00299-011-1024-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1024-z

Keywords

Navigation