Skip to main content
Log in

Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Crop productivity is strictly related to genome stability, an essential requisite for optimal plant growth/development. Genotoxic agents (e.g., chemical agents, radiations) can cause both chemical and structural damage to DNA. In some cases, they severely affect the integrity of plant genome by inducing base oxidation, which interferes with the basal processes of replication and transcription, eventually leading to cell death. The cell response to oxidative stress includes several DNA repair pathways, which are activated to remove the damaged bases and other lesions. Information concerning DNA repair in plants is still limited, although results from gene profiling and mutant analysis suggest possible differences in repair mechanisms between plants and other eukaryotes. The present review focuses on the base- and nucleotide excision repair (BER, NER) pathways, which operate according to the most common DNA repair rule (excision of damaged bases and replacement by the correct nucleotide), highlighting the most recent findings in plants. An update on DNA repair in organelles, chloroplasts and mitochondria is also provided. Finally, it is generally acknowledged that DNA repair plays a critical role during seed imbibition, preserving seed vigor. Despite this, only a limited number of studies, described here, dedicated to seeds are currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

At:

Arabidopsis thaliana

BER:

Base excision repair

8-oxo-dG:

7, 8-Dihydro-8-oxoguanine

DR:

Direct repair

DSBR:

Double-strand break repair

GGR:

Global genome repair

HR:

Homologous recombination

MMR:

Mismatch repair

Mt:

Medicago truncatula

NER:

Nucleotide excision repair

NHEJ:

Nonhomologous end joining

PEG:

Polyethylene glycol

QRT-PCR:

Quantitative real-time polymerase chain reaction

ROS:

Reactive oxygen species

TCR:

Transcription coupled repair

Tdp:

Tyrosyl-DNA phosphodiesterase

TFIIS:

Transcription elongation factor II-S

top1:

Gene encoding DNA topoisomerase I

topo I:

DNA topoisomerase I

References

  • Alseth I, Korvald H, Osman F, Seeberg E, Bioras M (2004) A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res 32:5119–5125

    Article  CAS  PubMed  Google Scholar 

  • Amor Y, Babiychuk E, Inze D, Levine A (1998) The involvement of poly(ADP-ribose) polymerase in the oxidative stress response in plants. FEBS Lett 440:1–7

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Chini A, Bernacchia G, Bracci A, Luccarini G, Cella R, Carbonera D (2000) Carrot cells contain two top1 genes having the coding capacity for two distinct DNA topoisomerases I. J Exp Bot 51:1979–1990

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Locato V, Bottone MG, De Gara L, Biggiogera M, Pellicciari C, Botti S, Di Gesù D, Donà M, Carbonera D (2010a) Response to UV-C radiation in topo I-deficient carrot cells with low ascorbate levels. J Exp Bot 61:575–585

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Carbonera D (2010b) Seed imbibition in Medicago truncatula Gaertn.: expression profiles of DNA repair genes in relation to PEG-mediated stress. J Plant Physiol. doi:10.1016/j.jplph.2010.10.008

  • Boesch P, Ibrahim N, Paulus F, Cosset A, Tarasenko V, Dietrich A (2009) Plant mitochondria possess a short-patch base excision DNA repair pathway. Nucleic Acids Res 37:5690–5700

    Article  CAS  PubMed  Google Scholar 

  • Boesch P, Weber-Lofti F, Ibrahim N, Tarasenko V, Cosset A, Paulus F, Lightowlers RN, Dietrich A (2010) DNA repair in organelles: pathways, organization, regulation, relevance in disease and aging. Biochim Bioph Acta. doi:10.1016/j.bbamcr.2010.10.002

  • Booth V, Koth CM, Edwards AM, Arrowsmith CH (2000) Structure of a conserved domain common to the transcription factors TFIIS, elongin A and CRSP70. J Biol Chem 275:31266–31268

    Article  CAS  PubMed  Google Scholar 

  • Brown JA, Pack LR, Sanman LE, Suo Z (2010) Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis. DNA Repair. doi:10.1016/j.dnarep.2010.09.005

  • Butler LH, Hay FR, Ellis RH, Smith RD, Murray TB (2009) Priming and re-drying improves the survival of mature seeds of Digitalis purpurea during storage. Ann Bot 103:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Caldecott KW (2001) Mammalian DNA single-strand break repair: an X-ra(y)ted affair. Bioessays 23:447–455

    Article  CAS  PubMed  Google Scholar 

  • Conconi A, Bespalov VA, Smerdon MJ (2002) Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc Natl Acad Sci USA 99:649–654

    Article  CAS  PubMed  Google Scholar 

  • Cordoba-Canero D, Dubois E, Ariza RR, Doutriaux M-P, Roldan-Arjona T (2009a) Arabidopsis uracil DNA glycosylase (UNG) is required for base excision repair of uracil and increases plant sensitivity to 5-fluorouracil. J Biol Chem 285:7475–7483

    Article  Google Scholar 

  • Cordoba-Canero D, Morales-Ruiz T, Roldan-Arjona T, Ariza RR (2009b) Single-nucleotide and long-patch base excision repair of DNA damage in plants. The Plant J 60:716–728

    Article  CAS  Google Scholar 

  • Costa RM, Morgante PG, Berra CM, Nakabashi M, Bruneau D, Bouchez D, Sweder KS, Van Sluys MA, Menck CF (2001) The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant J 28:385–395

    Article  CAS  PubMed  Google Scholar 

  • Cox MM (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42:41–63

    Article  CAS  PubMed  Google Scholar 

  • Dany AL, Tisser A (2001) A functional OGG1 homologue from Arabidopsis thaliana. Mol Gen Genom 265:293–301

    Article  CAS  Google Scholar 

  • Davies H, Probert R (2004) Protocol for comparative seed longevity testing sheet. Royal Botanic Gardens, Kew. http:\\www.kew.org/msbp/scitech/publications/comparativelongevity.pdf.London

  • Doucet-Chabeaud G, Godon C, Brutesco C, de Murcia G, Kazmaier M (2001) Ionizing radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis. Mol Gen Genom 265:954–963

    Article  CAS  Google Scholar 

  • Dubest S, Gallego ME, White CI (2002) Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 3:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • El-Khamisy SF, Saifi GM, Weinfeld M, Johansson F, Helleday T, Lupski JR, Caldecott KW (2005) Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy. Nature 434:108–113

    Article  CAS  PubMed  Google Scholar 

  • Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 6:398–409

    Article  CAS  Google Scholar 

  • Friedberg EC (1996) Relationships between DNA repair and transcription. Annu Rev Biochem 65:15–42

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ortiz MV, Ariza R, Roldan-Arjona T (2001) An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Mol Biol 47:795–804

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Grasser M, Kane CM, Merkle T, Melzer M, Emmersen J, Grasser KD (2009) Transcription elongation factor TFIIS is involved in Arabidopsis seed dormancy. J Mol Biol 386:598–611

    Article  CAS  PubMed  Google Scholar 

  • Gutman BL, Niyogi KN (2009) Evidence for base excision repair of oxidative DNA damage in chloroplasts of Arabidopsis thaliana. J Biol Chem 284:17006–17012

    Article  CAS  PubMed  Google Scholar 

  • Hunt L, Holdsworth MJ, Gray JE (2007) Nicotinamidase activity is important for germination. Plant J 51:341–351

    Article  CAS  PubMed  Google Scholar 

  • Inamdar KV, Pouliot JJ, Zhou T, Lees-Miller SP, Rasouli-Nia A, Povirk LF (2002) Conversion of phosphoglycolate to phosphate termini on 3′-overhangs of DNA double strand breaks by the human tyrosyl-DNA phosphodiesterase hTdp1. J Biol Chem 277:27162–27168

    Article  CAS  PubMed  Google Scholar 

  • Jiang CZ, Yee J, Mitchell DL, Britt AB (1997) Photorepair mutants of Arabidopsis. Proc Natl Acad Sci USA 94:7441–7445

    Article  CAS  PubMed  Google Scholar 

  • Kaiser G, Kleiner O, Beisswenger C, Batschauer A (2009) Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase. Planta 230:505–515

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol. doi:10.1111/j.1469-8137.2010.03461.x

  • Kunz BA, Anderson HJ, Osmond MJ, Vonarx EJ (2005) Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana. Environ Mol Mutat 45:115–127

    Article  CAS  Google Scholar 

  • Kuraoka I, Suziki K, Ito S, Hayashida M, Kwei JS, Ikegami T, Handa H, Nakabeppu T, Tanaka K (2007) RNA polymerase II bypasses 8-oxoguanine in the presence of transcription factor TFIIS. DNA Repair 6:841–851

    Article  CAS  PubMed  Google Scholar 

  • Lebedeva N, Rachkunova N, Boiteux S, Lavrik O (2008) Trapping of human DNA topoisomerase I by DNA structures mimicking intermediates of DNA repair. IUBMB Life 60:130–134

    Article  CAS  PubMed  Google Scholar 

  • Lee S-Y, Kim H, Hwang H-J, Jeong Y-M, Na Y-M, Woo J-C, Kim S-G (2010) Identification of tyrosyl-DNA phosphodiesterase as a novel DNA damage repair enzyme in Arabidopsis. Plant Physiol. doi:10.1104/pp.110.165068

  • Liu Z, Hong SW, Escobar M, Vierling E, Mitchell DL, Mount DW, Hall JD (2003) Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth. Plant Physiol 132:1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Lee J, Zhou P (2010) Navigating the nucleotide excision repair threshold. J Cell Physiol 224:585–589

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Carbonera D (2010a) The Tdp1 (tyrosyl-DNA phosphodiesterase) gene family in barrel medic (Medicago truncatula Gaertn.): bioinformatic investigation and expression profiles in response to copper- and PEG-mediated stress. Planta 232:393–407

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Buttafava A, Carbonera D (2010b) The TFIIS and TFIIS-like genes from Medicago truncatula are involved in oxidative stress response. Gene. doi:10.1016/j.gene.2010.09.004

  • Mielke C, Kalfalah FM, Christensen MO, Boege F (2007) Rapid and prolonged stalling of human DNA topoisomerase I in UVA-irradiated genomic areas. DNA Repair 6:1757–1763

    Article  CAS  PubMed  Google Scholar 

  • Molinier J, Lechner E, Dumbliariskas E, Genschik P (2008) Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 4:e1000093

    Article  PubMed  Google Scholar 

  • Murphy TM, George A (2005) A comparison of two DNA base excision repair glycosylases from Arabidopsis thaliana. Biochem Biophys Res Commun 329:869–872

    Article  CAS  PubMed  Google Scholar 

  • Murphy TM, Belmonte M, Shu S, Britt AB, Hatteroth J (2009) Requirement for abasic endonuclease gene homologues in Arabidopsis seed development. PLoS ONE 4:e4297

    Article  PubMed  Google Scholar 

  • Nielsen BL, Cupp JD, Brammer J (2010) Mechanisms for maintenance, replication and repair of the chloroplast genome in plants. J Exp Bot 61:2535–2537

    Article  CAS  PubMed  Google Scholar 

  • Puchta H, Hohn B (1996) From centimorgans to base pairs: homologous recombination in plants. Trends Plant Sci 1:340–348

    Google Scholar 

  • Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol 331:796–805

    Article  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effects of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Roldan-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681:169–179

    Article  CAS  PubMed  Google Scholar 

  • Rowan BA, Oldenburg DJ, Bendich AJ (2010) RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J Exp Bot 61:2575–2588

    Article  CAS  PubMed  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Ayako K, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotech 14:194–199

    Article  CAS  PubMed  Google Scholar 

  • Shedge V, Arrieta-Montel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    Article  CAS  PubMed  Google Scholar 

  • Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18:64–72

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Roy S, Roy Choudhury S, Sengupta M (2010) DNA repair and recombination in higher plants: insights from comparative genomics of Arabidopsis and rice. BMC Genomics 11:443

    Article  PubMed  Google Scholar 

  • Stivers JT, Jiang YL (2003) A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev 103:2729–2759

    Article  CAS  PubMed  Google Scholar 

  • Svejstrup JQ (2007) Contending with transcriptional arrest during RNAPII transcription elongation. Trends Biochem Sci 32:165–171

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Sakamoto A, Ishigaki Y, Nikaido O, Sun G, Hase Y, Shikazono N, Tano S, Watanabe H (2002) An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. Plant Physiol 129:64–71

    Article  CAS  PubMed  Google Scholar 

  • Taylor RM, Hamer MJ, Rosamond J, Bray CM (1998) Molecular cloning and functional analysis of the Arabidopsis thaliana DNA ligase I homologue. Plant J 14:75–81

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Bacic A (2005) Abiotic stress tolerance in grasses from model plants to crop plants. Plant Physiol 137:791–793

    Article  CAS  PubMed  Google Scholar 

  • Tomkinson AE, Mackey ZB (1998) Structure and function of mammalian ligases. Mutat Res/DNA Repair 407:1–9

    Article  CAS  Google Scholar 

  • Tuteja N (2003) Plant DNA helicases: the long unwinding road. J Exp Bot 54:2201–2214

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Ahmad P, Panda BB, Tuteja R (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681:134–149

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama Y, Suzuki Y, Sakaguchi K (2008) Characterization of plant XRCC1 and its interaction with proliferating cell nuclear antigen. Planta 227:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S, de Block M, Van de Steene N, van de Cotte B, Metzlaff M, Van Breusegem F (2007) Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci USA 104:15150–15155

    Article  CAS  PubMed  Google Scholar 

  • Vashisht AA, Tuteja N (2006) Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. J Photochem Photobiol B Biol 84:150–160

    Article  CAS  Google Scholar 

  • Veselova TV, Veselovskii VA, Usmanov PD, Usmanova OV, Kozar VI (2003) Hypoxia and imbibition injuries to aging seeds. Russian J Plant Physiol 50:835–842

    Article  CAS  Google Scholar 

  • Volker M, Mone MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JH, van Driel R, van Zeeland AA, Mullenders LH (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8:213–224

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular responses to DNA damage. Mol Cell 22:383–394

    Article  PubMed  Google Scholar 

  • Waterworth WM, Kozak J, Provost CM, Bray CM, Angelis KJ, West CE (2009) DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks. BCM Plant Biol 9:79

    Google Scholar 

  • Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010) A plant DNA ligase is an important determinant of seed longevity. Plant J. doi:10.1111/j.1365-313X.2010.04285.x

  • Wu X, Li J, Li X, Hsieh CL, Burgers PM, Lieber MR (1996) Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res 24:2036–2043

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa T, Sugimura K, Fukuda M, Yamazaki K, Katajina O, Okumura K, Aso T (2007) Functional characterization of a mammalian transcription factor, elongin A. Biochem Biophys Res Commun 352:237–243

    Article  CAS  PubMed  Google Scholar 

  • Zharkov DO (2008) Base excision DNA repair. Cell Mol Life Sci 65:1544–1565

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Fondo di Ateneo per la Ricerca, University of Pavia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Balestrazzi.

Additional information

Communicated by R. Reski.

A contribution to the Special Issue: Plant Biotechnology in Support of the Millennium Development Goals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balestrazzi, A., Confalonieri, M., Macovei, A. et al. Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep 30, 287–295 (2011). https://doi.org/10.1007/s00299-010-0975-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0975-9

Keywords

Navigation