Skip to main content
Log in

The marker SCK13603 associated with resistance to ascochyta blight in chickpea is located in a region of a putative retrotransposon

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The sequence characterized amplified region (SCAR) marker SCK13603, associated with ascochyta blight resistance in a chickpea recombinant inbred line (RIL) population, was used as anchored sequence for genome walking. The PCRs performed in the walking steps to walk in the same direction produced eight bands in 5′ direction and five bands in 3′ direction with a length ranking from 530 to 2,871 bp. The assembly of the bands sequences along with the sequence of SCK13603 resulted in 7,815 bp contig. Blastn analyses showed stretches of DNA sequence mainly distributed from the nucleotides 1,500 to 4,500 significantly similar to Medicago truncatula genomic DNA. Three open reading frames (ORFs) were identified and blastp analysis of predicted amino acids sequences revealed that ORF1, ORF2 and ORF3 had significant similarity to a CCHC zinc finger protein, to an integrase, and to a precursor of the glucoamylase s1/s2, respectively, from M. truncatula. The high homology of the putative proteins derived from ORF1 and ORF2 with retrotransposon proteins and the prediction of the existence of conserved domains usually present in retrotransposon proteins indicate that the marker SCK13603 is located in a region of a putative retrotransposon. The information generated in this study has contributed to increase the knowledge of this important region for blight resistance in chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BAC:

Bacterial artificial chromosome

Blastn:

Nucleotide basic local alignment search tool

Blastp:

Protein basic local alignment search tool

bp:

Bases pairs

DAF:

DNA amplification fingerprinting

EST:

Expressed sequence tag

LG:

Linkage group

LINE:

Long interspersed nuclear elements

LTR:

Long terminal repeat

MAS:

Marker-assisted selection

NCBI:

National Centre for Biotechnology Information

ORF:

Open reading frame

PCR:

Polymerase chain reaction

PPT:

Polypurine tract

PR:

Pathogenesis-related

QTL:

Quantitative trait loci

RAPD:

Random amplified polymorphic DNA

RGA:

Resistance gene analogue

RIL:

Recombinant inbred line

SCAR:

Sequence characterized amplified region

SNP:

Single nucleotide polymorphism

STMS:

Sequence tagged microsatellite sites

STS:

Sequence-tagged site

References

  • Acikgoz N, Karaca M, Er C, Meyveci K (1994) Chickpea and lentil production in Turkey. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season food legumes. Kluwer Academic Publishers, Dordrecht, pp 388–398

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Benko-Iseppon AM, Winter P, Huettel B, Staginnus C, Muehlbauer FJ, Kahl G (2003) Molecular markers closely linked to fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theor Appl Genet 107:379–386. doi:10.1007/s00122-003-1260-x

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya MK, Gonzales RA, Kraft M, Buzzell RI (1997) A copia-like retrotransposon Tgmr closely linked to the Rps1-k allele that confers race-specific resistance of soybean to Phytophthora sojae. Plant Mol Biol 34:255–264

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739. doi:10.1007/s00122-004-1693-x

    Article  PubMed  Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2005) Constitutive expression of the Flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiol Mol Plant Pathol 67:100–107. doi:10.1016/j.pmpp.2005.09.011

    Article  CAS  Google Scholar 

  • Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to ascohyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729. doi:10.1007/s00122-003-1297-x

    Article  PubMed  CAS  Google Scholar 

  • Coram TE, Pang ECK (2005a) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200. doi:10.1016/j.pmpp.2005.08.003

    Article  CAS  Google Scholar 

  • Coram TE, Pang ECK (2005b) Isolation and analysis of candidate ascochyta blight defence genes in chickpea.Part II. Microarray expression analysis of putative defence-related ESTs. Physiol Mol Plant Pathol 66:201–210. doi:10.1016/j.pmpp.2005.08.002

    Article  CAS  Google Scholar 

  • Flandez-Galvez H, Ades PK, Ford R, Pang ECK, Taylor PWJ (2003) QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea. Theor Appl Genet 107:1257–1265. doi:10.1007/s00122-003-1371-4

    Article  PubMed  CAS  Google Scholar 

  • Huettel B, Santra D, Muehlbauer FJ, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a fusarium resistance gene cluster. Theor Appl Genet 105:479–490. doi:10.1007/s00122-002-0933-1

    Article  PubMed  CAS  Google Scholar 

  • Gao L, McCarthy EM, Ganko EW, McDonald JF (2004) Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. BMC Genomics 5:1–18

    Article  CAS  Google Scholar 

  • Ichinose Y, Tiemann K, Schwenger-Erger C, Toyoda K, Hein F, Hanselle T, Cornels H, Barz W (2000) Genes expressed in Ascochyta rabiei-inoculated chickpea plants and elicited cell cultures as detected by differential cDNA-hybridisation. Z Naturforsch 55:44–54

    CAS  Google Scholar 

  • Iruela M, Rubio J, Barro F, Cubero JI, Millán T, Gil J (2006) Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287. doi:10.1007/s00122-005-0126-9

    Article  PubMed  CAS  Google Scholar 

  • Iruela M, Castro P, Rubio J, Cubero JI, Jacinto C, Millán T, Gil J (2007) Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur J Plant Pathol 119:29–37. doi:10.1007/s10658-007-9121-0

    Article  Google Scholar 

  • Jimenez-Diaz RM, Crino P, Halila MH, Mosconi C, Trapero-Casas A (1993) Screening for resistance to fusarium wilt and ascochyta blight in chickpea. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-season food legumes. ICARDA, Wiley, Chichester, pp 77–95

    Google Scholar 

  • Khirbat SK, Jalali BL (1997) Physiological changes in chickpea due to ascochyta blight inoculation. Ann Agric Biol Res 2:133–136

    Google Scholar 

  • Laten HM, Havecker ER, Farmer LM, Voytas DF (2003) SIRE1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Mol Biol Evol 20:1222–1230. doi:10.1093/molbev/msg142

    Article  PubMed  CAS  Google Scholar 

  • López MC, Olivares M, González CI, Martín F, García Pérez JL, Thomas MC (1999) Mobile elements: positive evolution or molecular parasitims? Ars Pharm 40:5–24

    Google Scholar 

  • Mei C, Cooper JD, Riner LA, Paiva NL (2001) Characterization of Medicago truncatula EST encoding beta-glucosidases: a search for enzymes active on endogenous isoflavonoid glucose conjugates. In: Abstract 4th workshop on Medicago truncatula, Wisconsin University, Wisconsin, USA, pp 55

  • Nakamura S, Asakawa S, Ohmudo N, Fukui K, Shimizu N, Kawasaki S (1997) Construction of a 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta 2 using a highly representative rice BAC library. Mol Gen Genet 254:611–620

    Article  PubMed  CAS  Google Scholar 

  • Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Oxon, pp 233–270

    Google Scholar 

  • Noel L, Moores TL, van der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JDG (1999) Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11:2099–2111

    Article  PubMed  CAS  Google Scholar 

  • Parniske M, Jones JDG (1999) Recombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family. Proc Natl Acad Sci USA 96:5850–5855

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Harrison G, Heslop-Harrison PJ, Flavell AJ, Kumar A (1997) Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome 40:617–625

    Article  PubMed  CAS  Google Scholar 

  • Pfaff T, Kahl G (2003) Mapping of gene-speciffc markers on the genetic map of chickpea (Cicer arietinum L.). Mol Genet Genomics 269:243–251. doi:10.1007/s00438-003-0828-0

    PubMed  CAS  Google Scholar 

  • Rajesh PN, Coyne C, Meksem K, Sharma DK, Gupta V, Muehlbauer FJ (2004) Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663–669. doi:10.1007/s00122-003-1464-0

    Article  PubMed  CAS  Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    Article  PubMed  CAS  Google Scholar 

  • Sant VJ, Sainani MN, Sami-Subbu R, Ranjekar PK, Gupta VS (2000) Ty1-copia retrotransposon-like elements in chickpea genome: their identification, distribution and use for diversity analysis. Gene 257:157–166

    Article  PubMed  CAS  Google Scholar 

  • Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci 40:1606–1612

    CAS  Google Scholar 

  • Selitrennikoff C (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894. doi:10.1128/AEM.67.7.2883-2894.2001

    Article  PubMed  CAS  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Article  PubMed  CAS  Google Scholar 

  • Sindhu A, Singh R, Nehra KS, Singal HR (1995) Elicitor-induced metabolic changes in seedlings of chickpea (Cicer arietinum L.) in relation to ascochyta blight. Ann Biol 11:183–187

    Google Scholar 

  • Strange RN, Gewis E, Gil J, Millán T, Rubio J, Daly K, Kharrat M, Cherrif M, Rhaiem A, Maden S, Dolar S, Dusunceli F (2004) Integrated control of blight of chickpea, Cicer arietinum, caused by the fungus Ascochyta rabiei: an overview. In: AEP (eds) Proc of 5ht European conference on grain legumes and 2nd international conference on legume genomics and genetics, Paris, France, pp 71–76

  • Terol J, Castillo MC, Bargues M, Pérez-Alonso M, de Frutos R (2001) Structural and evolutionary analysis of the copia-like elements in the Arabidopsis thaliana genome. Mol Biol Evol 18:882–892

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Udupa SM, Baum M (2003) Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202. doi:10.1007/s00122-002-1168-x

    PubMed  CAS  Google Scholar 

  • Verries C, Bes C, This P, Tesniere C (2000) Cloning and characterization of Vine-1, a LTR-retrotransposon-like element in Vitis vinifera L. and other Vitis species. Genome 43:366–376

    Article  PubMed  CAS  Google Scholar 

  • Vir S, Grewal JS (1974) Changes in phenolic content of gram plants induced by ascochyta blight infection. Indian Phytopathol 27:524–526

    Google Scholar 

  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance gene for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Xu Z, Escamilla-Trevino L, Zeng L, Lalgondar M, Bevan D, Winkel B, Mohamed A, Cheng CL, Shih MC, Poulton J, Esen A (2004) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55:343–367. doi:10.1007/s11103-004-0790-1

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Sanchez A, Khush GS, Zhu Y, Huang N (1998) Construction of a BAC contig containing the xa5 locus in rice. Theor Appl Genet 97:1120–1124. doi:10.1007/s001220050999

    Article  CAS  Google Scholar 

  • Yang ZN, Ye XR, Choi S, Molina J, Moonan F, Wing RA, Roose ML, Mirkov TE (2001) Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata (L.) Raf. Genome 44:382–393. doi:10.1139/gen-44-3-382

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Union project: GLIP, contract no. FOOD-CT-2004-506223, and the national project: CICYT, contract no. AGL2005-07497-CO2-01/AGR. M. Iruela acknowledges grant support from IFAPA-CICE Junta de Andalucía (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Gil.

Additional information

Communicated by K. Toriyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iruela, M., Pistón, F., Cubero, J.I. et al. The marker SCK13603 associated with resistance to ascochyta blight in chickpea is located in a region of a putative retrotransposon. Plant Cell Rep 28, 53–60 (2009). https://doi.org/10.1007/s00299-008-0609-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0609-7

Keywords

Navigation