Skip to main content
Log in

Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression

  • Cell biology and morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

During loblolly pine zygotic embryo development, increases in mRNAs for three ABA-responsive LEA-like genes coincided with the two developmental stage-specific peaks of endogenous ABA accumulation (Kapik et al. 1995). These ABA concentration profiles from zygotic embryo development were used to develop several tissue culture approaches that altered the exposure of somatic embryos to exogenous ABA. Elevating exogenous ABA at a time corresponding to mid-maturation improved the germination and resulted in more zygotic-like expression of selected genes in somatic embryos. Extending the time on maturation medium for a fourth month increased embryo yield, dry weight, and germination in high-and low-yield genotypes. Optimizing the amounts of embryogenic suspension, plated and exogenous ABA concentration increased from 22 to 66% in the early-stage bipolar embryos that developed to the cotyledonary stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attree SM (2003) Increasing levels of growth regulators and/or water stress during embryo development. U.S. Patent No. 6,627,441, September 30, 2003

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult 35:1–35

    Article  CAS  Google Scholar 

  • Becwar MR, Pullman GS (1995) Somatic embryogenesis in loblolly pine (Pinus taeda L.). In: Jain S, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. vol 3: Gymnosperms. Kluwer, The Netherlands, pp 287–301

    Google Scholar 

  • Borderies G, le Bechec M, Rossignol M, Lafitte C, Le Deunff E, Beckert M, Dumas C, Elisabeth MR (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212

    Article  PubMed  CAS  Google Scholar 

  • Bozhkov PV, Filonova LH, von Arnold S (2002) A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol Bioeng 77:658–667

    Article  PubMed  CAS  Google Scholar 

  • Cairney J, Xu N, Pullman GS, Ciavatta VT, Johns B (1999) Natural and somatic embryo development in loblolly pine: gene expression studies using differential display. Appl Biochem Biotechnol 77–79:5–17

    Article  Google Scholar 

  • Cairney J, Xu N, Mackay J, Pullman J (2000) Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev Biol Plant 36:155–162

    Article  CAS  Google Scholar 

  • Carrier DJ, Kendall EJ, Bock CA, Cunningham JE, Dunstan DI (1999) Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. J Exp Bot 50:1359–1364

    Article  CAS  Google Scholar 

  • Ciavatta VT, Morillon R, Pullman GS, Chrispeels M, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine (Pinus taeda L.). Plant Physiol 127:1556–1567

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Daie J, Wyse R, Hein M, Brenner ML (1984) Abscisic acid metabolism by source and sink tissues of sugar beet. Plant Physiol 74:810–814

    Article  PubMed  CAS  Google Scholar 

  • Dong JZ, Dunstan DI (1996) Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Planta 199:459–66

    Article  PubMed  CAS  Google Scholar 

  • Dong JZ, Dunstan DI (2000) Molecular biology of somatic embryogenesis in conifers. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, Dordrecht, pp 51–87

    Google Scholar 

  • Dunstan D, Bekkaoui F, Pilon M, Fowke L, Abrams S (1988) Effects of Abscisic acid and analogues on the maturation of white spruce (Picea glauca) somatic embryos. Plant Sci 58:77–84

    Article  CAS  Google Scholar 

  • Dunstan D, Bethune T, Abrams S (1991) Racemic abscisic acid and abcisyl alcohol promote maturation of white spruce (Picea glauca) somatic embryos. Plant Sci 76:219–228

    Article  CAS  Google Scholar 

  • Dunstan DI, Bock CA (1997) Abscisic acid [(+)-ABA content in white spruce somatic embryo tissues related to concentration of fed ABA. J Plant Physiol 150:691–696

    CAS  Google Scholar 

  • Dunstan DI, Bock C, Abrams D, Abrams S (1992) Metabolism of (+) and (−)-abscisic acid by somatic embryo suspension cultures of white spruce. Phytochemistry 31:1451–4154

    Article  CAS  Google Scholar 

  • Dunstan DI, Dong JZ, Carrier DJ, Abrams SR (1998) Events following ABA treatment of spruce somatic embryos. In Vitro Cell Dev Biol Plant 34:159–168

    CAS  Google Scholar 

  • Gupta PK, Pullman GS (1991) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation. U.S. Patent No. 5,036,007

  • Gonçalves S, Cairney J, Maroco J, Margarida Oliveira M, Miguel C (2005) Evaluation of control transcripts in real-time RT-PCR expression analysis during maritime pine embryogenesis. Planta 222: 556–563

    Article  PubMed  CAS  Google Scholar 

  • Kapik RH (1994) Changes in abscisic acid concentration during zygotic embryogenesis in loblolly pine (Pinus taeda) as determined by indirect ELISA. Ph.D. Dissertation, IPST, 256 p

  • Kapik RH, Dinus RJ, Dean JFD (1995) Abscisic acid and zygotic embryogenesis in Pinus taeda. Tree Physiol 15:485–490

    PubMed  CAS  Google Scholar 

  • Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251

    Article  PubMed  CAS  Google Scholar 

  • Klimaszewska K, Smith DR (1997) Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100:949–957

    Article  CAS  Google Scholar 

  • Klimaszewska K, Morency F, Jones-Overton C, Cooke J (2004) Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol Plant 121:682–690

    Article  CAS  Google Scholar 

  • Kong L, Attree SM, Fowke LC (1997) Changes in endogenous hormone levels in developing seeds, zygotic embryos and megagametophytes in Picea glauca. Physiol Plant 101:23–30

    Article  CAS  Google Scholar 

  • Label P, Lelu MA (2000) Exogenous abscisic acid fate during maturation of hybrid larch (Larix x leptoeuropaea) somatic embryos. Physiol Plant 109:456–462

    Article  CAS  Google Scholar 

  • Li XY, Huang H, Gbur EE Jr (1997) Polyethylene glycol-promoted development of somatic embryos in loblolly pine (Pinus taeda L.). In Vitro Cell Dev Biol Plant 33:184–189

    Article  CAS  Google Scholar 

  • Libby WJ, Rauter RM (1984) Advantages of clonal forestry. For Chron 60:145–149

    Google Scholar 

  • Mundy J, Chua NH (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7:2279–86.

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Park YS (2002) Implementation of somatic embryogenesis in clonal forestry: technical requirements and deployment strategies. Ann For Sci 59:651–656

    Article  Google Scholar 

  • Percy RE, Klimaszewska K, Cyr DR (2000) Evaluation of somatic embryogenesis for clonal propagation of western white pine. Can J For Res 30:1867–1876

    Article  Google Scholar 

  • Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. TAPPI R&D Division Biological Sciences Symposium, Minneapolis, Minnesota, pp 31–34

  • Pullman GS, Cairney J, Xu X, Feng X (1999) Gene expression differences between zygotic and somatic embryos monitored by differential display and cDNA array: a potential tool to improve loblolly pine embryo quality. In: Altman A, et al (eds) Plant biotechnology and in vitro biology in the 21st century. Kluwer, The Netherlands, pp 81–84, ISBN 0-7923-5826-0

  • Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003a) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758

    PubMed  CAS  Google Scholar 

  • Pullman GS, Namjoshi K, Zhang Y (2003b) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid, silver nitrate, and cytokinin adjustments. Plant Cell Rep 22:85–95

    Article  PubMed  CAS  Google Scholar 

  • Pullman GS, Montello P, Cairney J, Xu N, Feng X (2003c) Loblolly pine (Pinus taeda L.) somatic embryogenesis: maturation improvements by metal analyses of zygotic and somatic embryos. Plant Sci 164:955–969

    Article  CAS  Google Scholar 

  • Roberts D, Flinn B, Webb D, Webster F, Sutton B (1990) Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic interior spruce. Physiol Plant 78:355–360

    Article  CAS  Google Scholar 

  • Rutter MR, Handley III LW, Becwar MR (1998a) Method for regeneration of coniferous plants by somatic embryogenesis employing polyethylene glycol. U. S. Patent No. 5,731,191

  • Rutter MR, Handley III LW, Becwar MR (1998b) Method for regeneration of coniferous plants by somatic embryogenesis employing polyethylene glycol. U.S. Patent No. 5,731,204

  • Schmidt, EDL, DeJong, AJ, Devries, SC (1994) Signal molecules involved in plant embryogenesis. Plant Mol Biol 26 1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorp TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105

    Article  CAS  Google Scholar 

  • Sutton B (2002) Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann For Sci 59:657–661

    Article  Google Scholar 

  • Taiz L, Zeiger E (2002) Abscisic acid: a seed maturation and antistress signal. In: Plant physiology, 3rd edn. Sinaur Associates, Inc., pp 537–558, Sunderland, MA, ISBN 0-87893-823-0

  • Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69:1873–1899

    Google Scholar 

  • Van Winkle S, Johnson S, Pullman GS (2003) The impact of gelrite and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 21:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-Acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    Article  PubMed  CAS  Google Scholar 

  • van Zyl L, Bozhkov PV, Clapham DH, Sederoff RR, von Arnold S (2003) Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis. Gene Exp Patterns 3:83–91

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the member companies of IPST and the State of Georgia TIP3 program for financial support of this work. JC and JP acknowledge support from the National Science Foundation, Plant Genome Program (Award 0217594). We also thank Union Camp/International Paper for providing cones and seed used to start cultures and Heidi Schindler and Michelle Lane for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary F. Peter.

Additional information

Communicated by S. A. Merkle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vales, T., Feng, X., Ge, L. et al. Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26, 133–143 (2007). https://doi.org/10.1007/s00299-006-0221-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0221-7

Keywords

Navigation