Skip to main content

Advertisement

Log in

Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1β and TNF-α) on human fibroblast-like cell culture

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The clinical use of pulsed electromagnetic fields (PEMF) in osteoarticular pathology is widely extended, although the mechanisms involved are unknown. The aim of this study was to evaluate the action of a new protocol of treatment with PEMF on liquid medium cultures of fibroblast-like cells derivates of mononuclear peripheral blood cells. Fibroblast-like cells growth was obtained in liquid medium culture from mononuclear cells (MNC) of human peripheral blood. The PEMF irradiation protocol included an intensity of 2.25 mT, a frequency of 50 Hz and an application time of 15 min on days 7, 8 and 9 of cell culture. Immunophenotype was performed with specific heterologous monoclonal antibodies for each cell receptor (Vimentin, Cytokeratin, CD34, CD41, CD61 and CD68). The cytokines’ production was determined in the supernatant of the culture medium by means of the Luminex technology. The immunophenotype did not show any statistical difference on comparing treated against non-treated cell cultures on any of the days. In the treatment cell population, the proinflammatory cytokines, IL-1β and TNF-α showed a significant decrease on days 14 and 21 of the culture, whilst IL-10 increased significantly on day 21. It is concluded that PEMF irradiation does not alter the cell immunophenotype of the fibroblast-like cell population, but does provoke a decrease in the production of inflammatory-type cytokines (IL-1β, TNF-α) and an increase in cytokines of lymphocytic origin (IL-10). These facts coincide with the chronology of the clinical effect undergone by patients with osteoarticular pathology after PEMF irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166(12):7556–7562

    PubMed  CAS  Google Scholar 

  2. Barth PJ, Westhoff CC (2007) CD34+ fibrocytes: morphology, histogenesis and function. Curr Stem Cell Res Ther 2(3):221–227

    Article  PubMed  CAS  Google Scholar 

  3. Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor in reactive and reparative fibroses. Lab Invest 87(9):858–870

    Google Scholar 

  4. Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE (2006) The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther 8(6):R187

    Article  PubMed  Google Scholar 

  5. Botero JE, Contreras A, Parra B (2008) Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection. Oral Microbiol Immunol 23(4):291–298

    Article  PubMed  CAS  Google Scholar 

  6. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    PubMed  CAS  Google Scholar 

  7. Chan A, Filer A, Parsonage G, Kollnberger S, Gundle R, Buckley CD, Bowness P (2008) Mediation of the proinflammatory cytokine response in rheumatoid arthritis and spondylarthritis by interactions between fibroblast-like synoviocytes and natural killer cells. Arthritis Rheum 58(3):707–717

    Article  PubMed  CAS  Google Scholar 

  8. Chang K, Chang WH, Wu ML, Shih C (2003) Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells. Bioelectromagnetics 24(6):431–439

    Article  PubMed  Google Scholar 

  9. Chang K, Chang WHS, Yu YH, Shih C (2004) Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics 25:134–141

    Article  PubMed  CAS  Google Scholar 

  10. Curt S, Subirade M, Rouabhia M (2009) Production and in vitro evaluation of soy protein-based biofilms as a support for human keratinocyte and fibroblast culture. Tissue Eng Part A 15(6):1223–1232

    Article  PubMed  CAS  Google Scholar 

  11. De Mattei M, Caruso A, Traina GC, Pezzetti F, Baroni T, Sollazzo V (1999) Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 20(3):177–182

    Article  PubMed  Google Scholar 

  12. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  13. Earley MC, Vogt RF Jr, Shapiro HM, Mandy FF, Kellar KL, Bellisario R, Pass KA, Marti GE, Stewart CC, Hannon WH (2002) Report from a workshop on multianalyte microsphere assays. Cytometry 50(5):239–245

    Article  PubMed  CAS  Google Scholar 

  14. Elliott JP, Smith RL, Block CA (1988) Time-varying magnetic fields: effects of orientation on chondrocyte proliferation. J Orthop Res 6(2):259–264

    Article  PubMed  CAS  Google Scholar 

  15. Gatter KC, Cordell JL, Falini B, Ghosh AK, Heryet A, Nash JR, Pulford KA, Moir DJ, Erber WN, Stein H et al (1983) Monoclonal antibodies in diagnostic pathology: techniques and applications. J Biol Response Mod 2(4):369–395

    PubMed  CAS  Google Scholar 

  16. Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263

    Article  PubMed  CAS  Google Scholar 

  17. Hulme J, Robinson V, DeBie R, Wells G, Judd M, Tugwell P (2002) Electromagnetic fields for the treatment of osteoarthritis. Cochrane Database Syst Rev 1:CD003523

  18. Janhs ME, Lou E, Durdle NG, Bagnall K, Raso VJ, Cinats D, Barley RD, Cinats J, Jomha NM (2007) The effect of pulsed electromagnetic fields on chondrocyte morphology. Med Biol Eng Comput 45(10):917–925

    Article  Google Scholar 

  19. Kaneko S, Motomura S, Ibayashi H (1982) Differentiation of human bone marrow-derived fibroblastoid colony forming cells (CFU-F) and their roles in haemopoiesis in vitro. Br J Haematol 51(2):217–225

    PubMed  CAS  Google Scholar 

  20. Li JK, Lin JC, Liu HC, Chang WH (2007) Cytokine release from osteoblasts in response to different intensities of pulsed electromagnetic field stimulation. Electromagn Biol Med 26(3):153–165

    Article  PubMed  CAS  Google Scholar 

  21. Lohmann CH, Schwartz Z, Liu Y, Li Z, Simon BJ, Sylvia VL, Dean DD, Bonewald LF, Donahue HJ, Boyan BD (2003) Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res 21:326–334

    Article  PubMed  CAS  Google Scholar 

  22. McLeod KJ, Rubin CT, Donahue HJ (1995) Electromagnetic fields in bone repair and adaptation. Radio Sci 30:233–244

    Article  Google Scholar 

  23. Musaev AV, Guseinova SG, Imamverdieva SS (2003) The use of pulsed electromagnetic fields with complex modulation in the treatment of patients with diabetic polyneuropathy. Neurosci Behav Physiol 33(8):745–752

    Article  PubMed  CAS  Google Scholar 

  24. Norton LA (1982) Effects of a pulsed electromagnetic field on a mixed chondroblastic tissue culture. Clin Orthop Relat Res 167:280–290

    PubMed  CAS  Google Scholar 

  25. Norton LA, Witt DW, Rovetti LA (1988) Pulsed electromagnetic fields alter phenotypic expression in chondroblasts in tissue culture. J Orthop Res 6(5):685–689

    Article  PubMed  CAS  Google Scholar 

  26. Panagopoulos DJ, Karabarbounis A, Margaritis LH (2002) Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun 298:95–102

    Article  PubMed  CAS  Google Scholar 

  27. Patiño O, Grana D, Bolgiani A, Prezzavento G, Miño J, Mirlo A, Benaim F (1996) Pulsed electromagnetic fields in experimental cutaneous wound healing in rats. J Burn Care Rehabil 17(6 Pt 1):528–531

    PubMed  Google Scholar 

  28. Pilling D, Buckley CD, Salmon M, Gomer RH (2003) Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol 171(10):5537–5546

    PubMed  CAS  Google Scholar 

  29. Quan TE, Cowper SE, Wu SP, Bockenstedt LK, Bucala R (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36(4):598–606

    Article  PubMed  CAS  Google Scholar 

  30. Selvi E, Lorenzini S, Garcia-Gonzalez E, Maggio R, Lazzerini PE, Capecchi PL, Balistreri E, Spreafico A, Niccolini S, Pompella G, Natale MR, Guideri F, Laghi Pasini F, Galeazzi M, Marcolongo R (2008) Inhibitory effect of synthetic cannabinoids on cytokine production in rheumatoid fibroblast-like synoviocytes. Clin Exp Rheumatol 26(4):574–581

    PubMed  CAS  Google Scholar 

  31. Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D (2008) Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol 83(6):1323–1333

    Article  PubMed  CAS  Google Scholar 

  32. Stebulis JA, Rossetti RG, Atez FJ, Zurier RB (2005) Fibroblast-like synovial cells derived from synovial fluid. J Rheumatol 32(2):301–306

    PubMed  CAS  Google Scholar 

  33. Sun LY, Hsieh DK, Yu TC, Chiu HT, Lu SF, Luo GH, Kuo TK, Lee OK, Chiou TW (2009) Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 30:251–260

    Article  PubMed  CAS  Google Scholar 

  34. Torricelli P, Fini M, Giavaresi G, Botter R, Beruto D, Giardino R (2003) Biomimetic PMMA-based bone substitutes: a comparative in vitro evaluation of the effects of pulsed electromagnetic field exposure. J Biomed Mater Res A 64(1):182–188

    Article  PubMed  Google Scholar 

  35. Wagner W, Ho AD (2007) Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Rev 3(4):239–248

    Article  PubMed  Google Scholar 

  36. Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100:2426–2431

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

For this work, no financial support was received and the authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Gómez-Ochoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Ochoa, I., Gómez-Ochoa, P., Gómez-Casal, F. et al. Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1β and TNF-α) on human fibroblast-like cell culture. Rheumatol Int 31, 1283–1289 (2011). https://doi.org/10.1007/s00296-010-1488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-010-1488-0

Keywords

Navigation