Skip to main content
Log in

An evolving view of copy number variants

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aigner J, Villatoro S, Rabionet R, Roquer J, Jiménez-Conde J, Martí E, Estivill X (2013) A common 56-kilobase deletion in a primate-specific segmental duplication creates a novel butyrophilin-like protein. BMC Genet 14(July):61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Airoldi EM, Miller D, Athanasiadou R, Brandt N, Abdul-Rahman F, Neymotin B, Hashimoto T, Bahmani T, Gresham D (2016) Steady-State and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen. Mol Biol Cell 27(8):1383–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J et al (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439(7078):851–855

    CAS  PubMed  Google Scholar 

  • Anderson RP, Roth JR (1977) Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol 31(1):473–505

    CAS  PubMed  Google Scholar 

  • Arguello J Roman, Chen Y, Yang S, Wang W, Long M (2006) Origination of an X-linked testes chimeric gene by illegitimate recombination in drosophila. PLoS Genet 2(5):e77

    PubMed  PubMed Central  Google Scholar 

  • Arlt MF, Ozdemir AC, Birkeland SR, Wilson TE, Glover TW (2011) Hydroxyurea induces de novo copy number variants in human cells. Proc Natl Acad Sci USA 108(42):17360–17365

    PubMed  PubMed Central  Google Scholar 

  • Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW (2014) Copy number variants are produced in response to low-dose ionizing radiation in cultured cells. Environ Mol Mutagen 55(2):103–113

    CAS  PubMed  Google Scholar 

  • Avise JC, Kitto GB (1973) Phosphoglucose isomerase gene duplication in the bony fishes: an evolutionary history. Biochem Genet 8(2):113–132

    CAS  PubMed  Google Scholar 

  • Bagci O, Kurtgöz S (2015) Amplification of cellular oncogenes in solid tumors. N Am J Med Sci 7(8):341–346

    PubMed  PubMed Central  Google Scholar 

  • Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105(23):7899–7906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489(7417):513–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer BJ, Payen C, Raghuraman MK, Dunham MJ (2011) Origin-dependent inverted-repeat amplification: a replication-based model for generating palindromic amplicons. PLoS Genet 7(3):e1002016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer BJ, Payen C, Di Rienzi SC, Higgins MM, Ong G, Dunham MJ, Raghuraman MK (2015) Origin-dependent inverted-repeat amplification: tests of a model for inverted DNA amplification. PLoS Genet 11(12):e1005699

    PubMed  PubMed Central  Google Scholar 

  • Bridges CB (1936) The Bar ‘GENE’ a duplication. Science 83(2148):210–211

    CAS  PubMed  Google Scholar 

  • Brown CJ, Todd KM, Rosenzweig RF (1998) Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol Biol Evol 15(8):931–942

    CAS  PubMed  Google Scholar 

  • Bussotti G, Gouzelou E, Boite MC, Kherachi I, Spath GF (2018) Leishmania genome dynamics during environmental adaptation reveals strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio 9(6):e01399-18

  • Caignec L, Cedric CS, Sermon K, De Rycke M, Thienpont B, Debrock S, Staessen C et al (2006) Single-cell chromosomal imbalances detection by array CGH. Nucl Acids Res 34(9):e68

    PubMed  PubMed Central  Google Scholar 

  • Chakraborty M, VanKuren NW, Zhao R, Zhang X, Kalsow S, Emerson JJ (2018) Hidden genetic variation shapes the structure of functional elements in Drosophila. Nat Genet 50(1):20–25

    CAS  PubMed  Google Scholar 

  • Chan YF, Marks ME, Jones FC, Jr GV, Shapiro MD, Brady SD, Southwick AM et al (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963):302–305

    CAS  PubMed  Google Scholar 

  • Chen L, Zhou W, Zhang L, Zhang F (2014) Genome architecture and its roles in human copy number variation. Genom Inf 12(4):136–144

    Google Scholar 

  • Chen L, Zhou W, Zhang C, Lupski JR, Jin L, Zhang F (2015) CNV instability associated with DNA replication dynamics: evidence for replicative mechanisms in CNV mutagenesis. Hum Mol Genet 24(6):1574–1583

    CAS  PubMed  Google Scholar 

  • Chen H, Liu H, Qing G (2018) Targeting oncogenic Myc as a strategy for cancer treatment. Signal Trans Target Therap 3(February):5

    Google Scholar 

  • Clop A, Vidal O, Amills M (2012) Copy number variation in the genomes of domestic animals. Anim Genet 43(5):503–517

    CAS  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9(12):938–950

    CAS  PubMed  Google Scholar 

  • Couldrey C, Keehan M, Johnson T, Tiplady K, Winkelman A, Littlejohn MD, Scott A et al (2017) Detection and assessment of copy number variation using PacBio long-read and illumina sequencing in New Zealand dairy cattle. J Dairy Sci 100(7):5472–5478

    CAS  PubMed  Google Scholar 

  • Das AT, Tenenbaum L, Berkhout B (2016) Tet-on systems for doxycycline-inducible gene expression. Curr Gene Ther 16(3):156–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhami MK, Hartwig T, Fukami T (2016) Genetic basis of priority effects: insights from nectar yeast. Proc Biol Sci R Soc 283(1840):20161455. https://doi.org/10.1098/rspb.2016.1455

    Article  CAS  Google Scholar 

  • Dulmage KA, Darnell CL, Vreugdenhil A, Schmid AK (2018) Copy number variation is associated with gene expression change in archaea. Microbial Genom. https://doi.org/10.1099/mgen.0.000210

    Article  Google Scholar 

  • Ferris SD, Whitt GS (1979) Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12(4):267–317

    CAS  PubMed  Google Scholar 

  • Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42(5):373–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schöpflin R, Kraft K et al (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538(7624):265–269

    CAS  PubMed  Google Scholar 

  • Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harbor Perspect Med 4(6):a014241. https://doi.org/10.1101/cshperspect.a014241

    Article  CAS  Google Scholar 

  • Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42(5):399–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamazon ER, Stranger BE (2015) The impact of human copy number variation on gene expression. Brief Funct Genom 14(5):352–357

    CAS  Google Scholar 

  • Gamazon ER, Nicolae DL, Cox NJ (2011) A study of CNVs as trait-associated polymorphisms and as expression quantitative trait loci. PLoS Genet 7(2):e1001292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger T, Cox J, Mann M (2010) Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genet 6(9):e1001090

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ et al (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307(5714):1434–1440

    CAS  PubMed  Google Scholar 

  • Greenblum S, Carr R, Borenstein E (2015) Extensive strain-level copy-number variation across human gut microbiome species. Cell 160(4):583–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4(12):e1000303

    PubMed  PubMed Central  Google Scholar 

  • Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci USA 107(43):18551–18556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu S, Yuan B, Campbell IM, Beck CR, Carvalho Claudia M B, Nagamani Sandesh C S, Erez A et al (2015) Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet 24(14):4061–4077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansche PE (1975) Gene duplication as a mechanism of genetic adaptation in Saccharomyces cerevisiae. Genetics 79(4):661–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harari Y, Ram Y, Kupiec M (2018) Frequent ploidy changes in growing yeast cultures. Curr Genet 64(5):1001–1004

    CAS  PubMed  Google Scholar 

  • Hartmann FE, Croll D (2017) Distinct trajectories of massive recent gene gains and losses in populations of a microbial eukaryotic pathogen. Mol Biol Evol 34(11):2808–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings PJ, Ira G, Lupski JR, Iafrate AJ, Feuk L, Rivera MN, Listewnik ML et al (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5(1):e1000327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henrichsen CN, Vinckenbosch N, Zöllner S, Chaignat E, Pradervand S, Schütz F, Ruedi M, Kaessmann H, Reymond A (2009) Segmental copy number variation shapes tissue transcriptomes. Nat Genet 41(4):424–429

    CAS  PubMed  Google Scholar 

  • Hong J, Gresham D (2014) Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments. PLoS Genet 10(1):e1004041

    PubMed  PubMed Central  Google Scholar 

  • Hopkinson DA, Edwards YH, Harris H (1976) The distributions of subunit numbers and subunit sizes of enzymes: a study of the products of 100 human gene loci. Ann Hum Genet 39(4):383–411

    CAS  PubMed  Google Scholar 

  • Horiuchi T, Horiuchi S, Novick A (1963) The genetic basis of hyper-synthesis of beta-galactosidase. Genetics 48:157–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, Graves-Lindsay TA et al (2017) Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res 27(5):677–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B Biol Sci 256(1346):119–124

    CAS  Google Scholar 

  • Hull RM, Cruz C, Jack CV, Houseley J (2017) Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biol 15(6):e2001333

    PubMed  PubMed Central  Google Scholar 

  • Itsara A, Hao W, Smith JD, Nickerson DA, Romieu I, London SJ, Eichler EE (2010) De Novo rates and selection of large copy number variation. Genome Res 20(11):1469–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jack CV, Cruz C, Hull RM, Keller MA, Ralser M, Houseley J (2015) Regulation of ribosomal DNA amplification by the TOR pathway. Proc Natl Acad Sci USA 112(31):9674–9679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MK (2018) Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Res 18(4):foy039. https://doi.org/10.1093/femsyr/foy039

    Article  CAS  PubMed Central  Google Scholar 

  • Kim S, Cho C-S, Han K, Lee J (2016) Structural variation of alu element and human disease. Genom Inf 14(3):70–77

    Google Scholar 

  • Konings P, Vanneste E, Jackmaert S, Ampe M, Verbeke G, Moreau Y, Vermeesch JR, Voet T (2012) Microarray analysis of copy number variation in single cells. Nat Protoc 7(2):281–310

    CAS  PubMed  Google Scholar 

  • Koszul R, Caburet S, Dujon B, Fischer G (2004) Eukaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J 23(1):234–243

    CAS  PubMed  Google Scholar 

  • Lauer S, Avecilla G, Spealman P, Sethia G, Brandt N, Levy SF, Gresham D (2018) Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. PLoS Biol 16(12):e3000069

    PubMed  PubMed Central  Google Scholar 

  • Lee JA, Carvalho Claudia M B, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–1247

    CAS  PubMed  Google Scholar 

  • Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5):1012–1025

    PubMed  PubMed Central  Google Scholar 

  • Lupiáñez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet TIG 32(4):225–237

    PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    CAS  PubMed  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154(1):459–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansisidor A, Jr TM, Srivastava P, Dartis DD, Delgado AP, Blitzblau HG, Klein H, Hochwagen A (2018) Genomic copy-number loss is rescued by self-limiting production of DNA circles. Mol Cell 72(3):583-93.e4

    Google Scholar 

  • Mason Jennifer M O, McEachern MJ (2018) Chromosome ends as adaptive beginnings: the potential role of dysfunctional telomeres in subtelomeric evolvability. Curr Genet 64(5):997–1000

    CAS  PubMed  Google Scholar 

  • Mayo S, Monfort S, Roselló M, Orellana C, Oltra S, Caro-Llopis A, Martínez F (2017) Chimeric genes in deletions and duplications associated with intellectual disability. Int J Genom Proteom 2017(May):4798474

    Google Scholar 

  • McIsaac RS, Gibney PA, Chandran SS, Benjamin KR, Botstein D (2014) Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucl Acids Res 42(6):e48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merla G, Howald C, Henrichsen CN, Lyle R, Wyss C, Zabot M-T, Antonarakis SE, Reymond A (2006) Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet 79(2):332–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michels E, De Preter K, Van Roy N, Speleman F (2007) Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet Med 9(September):574

    CAS  PubMed  Google Scholar 

  • Molina J, Carmona-Mora P, Chrast J, Krall PM, Canales CP, Lupski JR, Reymond A, Walz K (2008) Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome. Hum Mol Genet 17(16):2486–2495

    CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Payen C, Di Rienzi SC, Ong GT, Pogachar JL, Sanchez JC, Sunshine AB, Raghuraman MK, Brewer BJ, Dunham MJ (2014) The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection. Gene Genomes Genet 4(3):399–409

    Google Scholar 

  • Pham GM, Newton L, Wiegert-Rininger K, Vaillancourt B, Douches DS, Robin Buell C (2017) Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression in cultivated potato. Plant J Cell Mol Biol 92(4):624–637

    CAS  Google Scholar 

  • Qian Z, Adhya S (2017) DNA repeat sequences: diversity and versatility of functions. Curr Genet 63(3):411–416

    CAS  PubMed  Google Scholar 

  • Ramirez O, Olalde I, Berglund J, Lorente-Galdos B, Hernandez-Rodriguez J, Quilez J, Webster MT et al (2014) analysis of structural diversity in wolf-like canids reveals post-domestication variants. BMC Genom 15(1):465

    Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Daniel Andrews T, Fiegler H et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rigau M, Juan D, Valencia A, Rico D (2019) Intronic CNVs and gene expression variation in human populations. PLoS Genet 15(1):e1007902

    PubMed  PubMed Central  Google Scholar 

  • Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Pierce S et al (2013) Formation of chimeric genes by copy-number variation as a mutational mechanism in Schizophrenia. Am J Hum Genet 93(4):697–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrider DR, Navarro Fabio C P, Galante Pedro A F, Parmigiani RB, Camargo AA, Hahn MW, de Souza SJ (2013) Gene copy-number polymorphism caused by retrotransposition in humans. PLoS Genet 9(1):e1003242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schughart K, Kappen C, Ruddle FH (1989) Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc Natl Acad Sci USA 86(18):7067–7071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S et al (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–528

    CAS  PubMed  Google Scholar 

  • Shor E, Fox CA, Broach JR (2013) The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet 9(8):e1003680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: r loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28(13):1384–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonti RV, Roth JR (1989) Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123(1):19–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spielmann M, Lupiáñez DG, Mundlos S (2018) Structural variation in the 3D genome. Nat Rev Genet 19(7):453–467

    CAS  PubMed  Google Scholar 

  • Steinrueck M, Guet CC (2017) Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection. eLife. https://doi.org/10.7554/eLife.25100

    Article  PubMed  PubMed Central  Google Scholar 

  • Stratton MR, Campbell PJ, Andrew Futreal P (2009) The cancer genome. Nature 458(7239):719–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuber CW, Goodman MM (1983) Inheritance, intracellular localization, and genetic variation of phosphoglucomutase isozymes in maize (Zea mays L.). Biochem Genet 21(7–8):667–689

    CAS  PubMed  Google Scholar 

  • Sturtevant AH (1925) The effects of unequal crossing over at the bar locus in Drosophila. Genetics 10(2):117–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    CAS  PubMed  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56(4):619–630

    CAS  PubMed  Google Scholar 

  • Tosato V, Sims J, West N, Colombin M, Bruschi CV (2017) Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae. Curr Genet 63(2):281–292

    CAS  PubMed  Google Scholar 

  • Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B et al (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543(7643):122–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh JB (1995) How often do duplicated genes evolve new functions? Genetics 139(1):421–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh B (2003) Population-genetic models of the fates of duplicate genes. Genetica 118(2–3):279–294

    CAS  PubMed  Google Scholar 

  • Wang H, Chai Z, Dan H, Ji Q, Xin J, Zhang C, Zhong J (2019) A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genom 20(1):61

    Google Scholar 

  • Wilson TE, Arlt MF, Park SH, Rajendran S, Paulsen M, Ljungman M, Glover TW (2015) Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res 25(2):189–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Lingyang X, Zhou Y, Liu M, Wang L, Kijas JW, Zhang H, Li L, Liu GE (2018) Diversity of copy number variation in a worldwide population of sheep. Genomics 110(3):143–148

    CAS  PubMed  Google Scholar 

  • Zarrei M, MacDonald JR, Merico D, Scherer SW (2015) A copy number variation map of the human genome. Nat Rev Genet 16(3):172–183

    CAS  PubMed  Google Scholar 

  • Zhou B, Ho SS, Zhang X, Pattni R, Haraksingh RR, Urban AE (2018) Whole-genome sequencing analysis of CNV using low-coverage and paired-end strategies is efficient and outperforms array-based CNV analysis. J Med Genet 55(11):735–743

    CAS  PubMed  Google Scholar 

  • Ziv N, Siegal ML, Gresham D (2013) Genetic and nongenetic determinants of cell growth variation assessed by high-throughput microscopy. Mol Biol Evol 30(12):2568–2578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziv N, Shuster BM, Siegal ML, Gresham D (2017) Resolving the complex genetic basis of phenotypic variation and variability of cellular growth. Genetics 206(3):1645–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Żmieńko A, Samelak A, Kozłowski P, Figlerowicz M (2014) Copy number polymorphism in plant genomes. TAG 127(1):1–18

    PubMed  Google Scholar 

  • Zuellig MP, Sweigart AL (2018) Gene duplicates cause hybrid lethality between sympatric species of mimulus. PLoS Genet 14(4):e1007130

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gresham.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauer, S., Gresham, D. An evolving view of copy number variants. Curr Genet 65, 1287–1295 (2019). https://doi.org/10.1007/s00294-019-00980-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00980-0

Keywords

Navigation