Skip to main content
Log in

Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The main molecular factors involved in the complex interactions occurring between plants (bean), two different fungal pathogens (Botrytis cinerea, Rhizoctonia solani) and an antagonistic strain of the genus Trichoderma were investigated. Two-dimensional (2-D) electrophoresis was used to analyze separately collected proteomes from each single, two- or three-partner interaction (i.e., plant, pathogenic and antagonistic fungus alone and in all possible combinations). Differential proteins were subjected to mass spectrometry and in silico analysis to search for homologies with known proteins. In the plant proteome, specific pathogenesis-related proteins and other disease-related factors (i.e., potential resistance genes) seem to be associated with the interaction with either one of the two pathogens and/or T. atroviride. This finding is in agreement with the demonstrated ability of Trichoderma spp. to induce systemic resistance against various microbial pathogens. On the other side, many differential proteins obtained from the T. atroviride interaction proteome showed interesting homologies with a fungal hydrophobin, ABC transporters, etc. Virulence factors, like cyclophilins, were up-regulated in the pathogen proteome during the interaction with the plant alone or with the antagonist too. We isolated and confidently identified a large number of protein factors associated to the multi-player interactions examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arévalo-Rodriguez M, Cardenas ME, Wu X, Hanes SD, Heitman J (2000) Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J 19:3739–3749

    Article  PubMed  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh S (1997) Signalling in plant-microbe interactions. Science 276:726–733

    Article  PubMed  CAS  Google Scholar 

  • Benítez T, Delgado-Jarana J, Rincón AM, Rey M, Limón MC (1998) Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. In: Pandalai SG (ed) Recent research developments in microbiology, vol 2. Research Signpost, Trivandrum, pp 129–150

    Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bigirimana J, De Meyer G, Poppe JE, Hofte M (1997) Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouww Univ Gent 62:1001–1007

    Google Scholar 

  • Brunner K, Zeilinger S, Ciliento R, Woo SL, Lorito M, Kubicek CP, Mach RL (2005). Genetic improvement of a fungal biocontrol agent to enhance both antagonism and induction of plant systemic disease resistance. Appl Environ Microbiol 71:3959–3965

    Article  PubMed  CAS  Google Scholar 

  • Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock H-P, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  CAS  Google Scholar 

  • Chet I (1987) Trichoderma—Application, mode of action, and potential as a biocontrol agent of soil-born pathogenetic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • De Meyer G, Bigirimana J, Ela Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263:18545–18552

    PubMed  CAS  Google Scholar 

  • Gil-ad NL, Bar-Nun N, Noy T, Mayer AM (2000) Enzymes of Botrytis cinerea capable of breaking down hydrogen peroxide. FEMS Microbiol Lett 190:121–126

    Article  PubMed  CAS  Google Scholar 

  • Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  PubMed  CAS  Google Scholar 

  • Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436

    Article  PubMed  CAS  Google Scholar 

  • Grinyer J, McKay M, Herbert B, Nevalainen H (2004a) Fungal proteomics: mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biological control. Curr Genet 45(3):170–175

    Article  CAS  Google Scholar 

  • Grinyer J, McKay M, Nevalainen H, Herbert BR (2004b) Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45:163–169

    Article  CAS  Google Scholar 

  • Grinyer J, Hunt S, McKay M, Herbert BR, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47(6):381–388

    Article  PubMed  CAS  Google Scholar 

  • Ha GH, Lee SU, Kang DG, Ha NY, Kim SH, Kim J, Bae JM, Kim JW, Lee CW (2002) Proteome analysis of human stomach tissue: separation of soluble proteins by two-dimensional polyacrylamide gel electrophoresis and identification by mass spectrometry. Electrophoresis 23(15):2513–2524

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14(2):177–193

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of Soilborne Plant Pathogens. Plant Cell 8(10):1855–1869

    Article  PubMed  CAS  Google Scholar 

  • Harman GE, Kubicek CP (1998) Trichoderma and Gliocladium—Enzymes, biological control and commercial applications, vol 2. Taylor & Francis, London

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species-opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv Appl Microbiol 56:313–330

    Article  CAS  Google Scholar 

  • Howell CR (2003) Mechanism employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concept. Plant Dis 87:4–10

    Google Scholar 

  • Jacobs DI, van Rijssen MS, van der Heijden R, Verpoorte R (2001) Sequential solubilization of proteins precipitated with trichloroacetic acid in acetone from cultured Catharanthus roseus cell yields 52% more spots after two-dimensional electrophoresis. Proteomics 1:1345–1350

    Article  PubMed  CAS  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231

    Article  PubMed  CAS  Google Scholar 

  • Kazemi-Pour N, Condemine G, Hugouvieux-Cotte-Pattat N (2004) The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 4:3177–3186

    Article  PubMed  CAS  Google Scholar 

  • Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23:18–33

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    Article  PubMed  CAS  Google Scholar 

  • Kullnig C, Mach RL, Lorito M, Kubicek CP (2000) Enzyme diffusion from Trichoderma atroviride (= T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl Environ Microbiol 66(5):2232–2234

    Article  PubMed  CAS  Google Scholar 

  • Lanzuise S, Ruocco M, Scala V, Woo SL, Scala F, Vinale F, Del Sorbo G, Lorito M (2002) Cloning of ABC transporter-encoding genes in Trichoderma spp. to determine their involvement in biocontrol. J Plant Pathol 84:184

    Google Scholar 

  • Lim D, Hains P, Walsh B, Bergquist P, Nevalainen H (2001) Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1:899–910

    Article  PubMed  CAS  Google Scholar 

  • Lim MS, Elenitoba-Johnson KSJ (2004) Proteomics in pathology research. Lab Invest 84:1227–1244

    Article  PubMed  CAS  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Liu P-G, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416–423

    Article  PubMed  CAS  Google Scholar 

  • Lo CT, Liao TF, Deng TC (2000) Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathology 90(Suppl):S47

    Google Scholar 

  • Lorito M, Woo SL (1998) Advances in understanding the antifungal mechanisms of Trichoderma and new applications for biological control. In: Duffy B, Rosenberger U, Défago G (eds) Molecular approaches in biological control, vol 21. IOBC WPRS Bulletin/Bulletin OILB SROP, Dijon, France, pp 73–80

  • Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP (1996) Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proc Natl Acad Sci USA 93:14868–14872

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson JK (2004) In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl Environ Microbiol 70(5):3073–3081

    Article  PubMed  CAS  Google Scholar 

  • Marks AR (1996) Cellular functions of immunophilins. Physiol Rev 76:631–649

    PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Moffett P, Farnham G, Peart JR, Baulcombe DC (2002) Interaction between domains of a plant NBS–LRR protein in disease resistance-related cell death. EMBO J 21:4511–4519

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Tissièrers A, Georgopoulos C (1994) Progress and perspectives on the biology of heat shock proteins and molecular chaperones. In: Morimoto RI, Tissières A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Ramonell KM, Somerville S (2002) The genomics parade of defense responses: to infinity and beyond. Curr Opin Plant Biol 5:1–4

    Article  Google Scholar 

  • Rey M, Llobell A, Monte E, Scala F, Lorito M (2004) Trichoderma genomics. In: Arora K, Khachatourians GG (eds) Applied mycology and biotechnology—Fungal genomics, vol 4. Elsevier, Amsterdam, pp 225–248

  • Rep M, Dekker HL, Vossen JH, de Boer AD, Houterman PM, Speijer D, Back JW, de Koster CG, Cornelissen BJC (2002) Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 130:904–917

    Article  PubMed  CAS  Google Scholar 

  • Rohe M, Gierlich A, Hermann H, Hahn M, Schmidt B, Rosahl S, Knogge W (1995) The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrsl resistance genotype. EMBO J 14(17):4168–4177

    PubMed  CAS  Google Scholar 

  • Ronald PC (1997) The molecular basis of disease resistance in rice. Plant Mol Biol 35:179–186

    Article  PubMed  CAS  Google Scholar 

  • Saravan RS, Rose JKC (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522–2532

    Article  CAS  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12(8):386–393

    Article  PubMed  CAS  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubiecek CP, Harman GE (eds) Trichoderma and Gliocladium vol 1. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Smolka MB, Martins D, Winck FV, Santoro CE, Castellari RR, Ferrari F, Brum IJ, Galembeck E, Della Coletta Filho H, Machado MA, Marangoni S, Novello JC (2003) Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution. Proteomics 3:224–237

    Article  PubMed  CAS  Google Scholar 

  • Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum. Identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Xia Y, Cameron R, Shadle G, Blount J, Lamb C, Dixon RA (2004) Signals for local and systemic responses of plants to pathogen attack. J Exp Bot 55(395):169–179

    Article  PubMed  CAS  Google Scholar 

  • Talbot NJ (2003) Functional genomics of plant-pathogen interactions. New Phytol 159(1):1–10

    Article  CAS  Google Scholar 

  • Valdivia RH, Schekman R (2003) The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci USA 100(18):10287–10292

    Article  PubMed  CAS  Google Scholar 

  • Viaud M, Brunet-Simon A, Brygoo Y, Pradier J-M, Levis C (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol Microbiol 50(5):1451–1465

    Article  PubMed  CAS  Google Scholar 

  • van der Vlugt-Bergmans CJ, Wagemakers CA, van Kan JA (1997) Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant Microbe Interact 10(1):21–29

    PubMed  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863–873

    Article  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69(12):7343–7353

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Williams K (1997) Cross-species protein identification using amino acid composition, peptide mass fingerprint, isoelectric point and molecular mass: a theoretical evaluation. J Theor Biol 186:7–15

    Article  PubMed  CAS  Google Scholar 

  • Wösten HA (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  PubMed  Google Scholar 

  • Woo SL, Scala F, Rocco M, Lorito M (2006) The Molecular Biology of the Interactions Between Trichoderma spp., Phytopathogenic Fungi, and Plants. Phytopathology 96(2):181–185

    CAS  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following projects: FIRB 2002 prot. RBNE01K2E7; PRIN 2003 prot. 2003070719-003, MIUR- PON project No. DD12935 del 02/08/2002; MIUR-PON project No. DD1219 del 05/10/2004; MIUR-PON project No. DD1801 del 31/12/2004; EU TRICHOEST QLK3-2002-02032; EU 2E-BCAs. We also acknowledge the support of G. E. Harman (Cornell University, Geneva, NY, USA) for help on the analysis with the Proteomics Analyzer 4700 MALDI-TOF/TOF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Lorito.

Additional information

Communicated by J. Heitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marra, R., Ambrosino, P., Carbone, V. et al. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50, 307–321 (2006). https://doi.org/10.1007/s00294-006-0091-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0091-0

Keywords

Navigation