Skip to main content
Log in

Rearrangements in the Physarum polycephalum mitochondrial genome associated with a transition from linear mF-mtDNA recombinants to circular molecules

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Although mitochondrial DNA (mtDNA) is transmitted to progeny from one parent only in Physarum polycephalum, the mtDNAs of progeny of mF+ plasmodia vary in structure. To clarify the mechanisms associated with the mitochondrial plasmid mF that generate mtDNA polymorphisms, 91 progeny of four strains (KM88 × JE8, KM88 × TU111, KM88 × NG111, Je90) were investigated using RFLP analysis, PCR, and pulse-field gel electrophoresis (PFGE). Nine mtDNA rearrangement types were found, with rearrangements occurring exclusively in the mF regions. PFGE revealed that, in the groups containing rearranged mtDNA, the linear mF–mtDNA recombinants had recircularized. Sequencing the rearranged region of one of the progeny suggested that the mF plasmid and the mtDNA recombine primarily at the ID sequences, linearizing the circular mtDNA. Recombination between the terminal region of the mF plasmid and a region about 1 kbp upstream of the mitochondrial/plasmid ID sequence results in a rearranged circular mtDNA, with variations caused by differences in the secondary recombination region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert B, Godelle B, Gouyon P (1998) Evolution of the plant mitochondrial genome: dynamics of duplication and deletion of sequences. J Mol Evol 46:155–158

    CAS  PubMed  Google Scholar 

  • Cermakian N, Ikeda TM, Miramontes P, Lang BF, Gray MW, Cedergren R (1997) On the evolution of single-subunit RNA polymerases. J Mol Evol 45:671–681

    CAS  PubMed  Google Scholar 

  • Fauron C, Casper M, Gao Y, Moore B (1995) The maize mitochondrial genome: dynamic, yet functional. Trends Genet 11:228–235

    Google Scholar 

  • Griffiths AJF (1992) Fungal senescence. Annu Rev Genet 26:351–372

    CAS  PubMed  Google Scholar 

  • Griffiths AJF (1995) Natural plasmid of filamentous fungi. Microbiol Rev 59:673–685

    CAS  PubMed  Google Scholar 

  • Janska H, Woloszynska M (1997) The dynamic nature of plant mitochondrial genome organization. Acta Biochim Pol 44:239–250

    CAS  PubMed  Google Scholar 

  • Kawano S, Kuroiwa T (1989) Transmission pattern of mitochondrial DNA during plasmodium formation in Physarum polycephalum. J Gen Microbiol 135:1559–1566

    Google Scholar 

  • Kawano S, Takano H, Kuroiwa T (1995) Sexuality of mitochondria: fusion, recombination, and plasmids. Int Rev Cytol 161:49–110

    CAS  PubMed  Google Scholar 

  • Kawano S, Anderson RW, Nanba T, Kuroiwa T (1987) Polymorphisms and uniparental inheritance of mitochondrial DNA in Physarum polycephalum. J Gen Microbiol 133:3175–3182

    CAS  PubMed  Google Scholar 

  • Kawano S, Takano H, Mori K, Kuroiwa T (1991a) A mitochondrial plasmid that promotes mitochondrial fusion in Physarum polycephalum. Protoplasma 160:167–169

    Google Scholar 

  • Kawano S, Takano H, Mori K, Kuroiwa T (1991b) The oldest laboratory strain of Physarum polycephalum. Physarum Newsl 22:70–75

    Google Scholar 

  • Kirouac-Brunet J, Mansson S, Pallota D (1981) Multiple allelism at the matB locus in Physarum polycephalum. Can J Genet Cytol 23: 9–16

    Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17:89–97

    Article  CAS  PubMed  Google Scholar 

  • Moeykens CA, Mackenzie SA, Shoemaker RC (1995) Mitochondrial genome diversity in soybean: repeats and rearrangements. Plant Mol Biol 29:245–254

    CAS  PubMed  Google Scholar 

  • Moriyama Y, Kawano S (2003) Rapid, selective digestion of mitochondrial DNA in accordance with the matA hierarchy of multiallelic mating types in the mitochondrial inheritance of Physarum polycephalum. Genetics 164:963–975

    CAS  PubMed  Google Scholar 

  • Nakagawa CC, Jones EP, Miller DL (1998) Mitochondrial DNA rearrangements associated with mF plasmid integration and plasmodial longevity in Physarum polycephalum. Curr Genet 33:178–187

    CAS  PubMed  Google Scholar 

  • Ohta T, Kawano S, Kuroiwa T (1993) Restriction of amoebo-flagellate (AF) transformation to interphase is related to M phase replication of the centrosome complex in the amoebae of the true slime mould, Physarum polycephalum: a three-dimensional approach. J Struct Biol 111:105–117

    Google Scholar 

  • Ryan R, Grant D, Chang KS, Swift H (1978) Isolation and characterization of mitochondrial DNA from Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 75:3268–3272

    CAS  PubMed  Google Scholar 

  • Sakurai R, Sasaki N, Takano H, Abe T, Kawano S (2000) In vivo conformation of mitochondrial DNA revealed by pulse-field gel electrophoresis in the true slime mold, Physarum polycephalum. DNA Res 7:83–91

    CAS  PubMed  Google Scholar 

  • Sakurai R, Nomura H, Moriyama Y, Kawano S (2004) The mitochondrial plasmid of the true slime mold Physarum polycephalum bypasses uniparental inheritance by promoting mitochondrial fusion. Curr Genet 46:103–114

    CAS  PubMed  Google Scholar 

  • Sambrook J, Frich EH, Manistis T (1989) Transfer of DNA to nitrocellulose filters. In: Ford N, Nolan C, Ferguson M (eds) Molecular cloning: laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 9.38–9.40

    Google Scholar 

  • Sasaki N, Sakai A, Kawano S, Kuroiwa H, Kuroiwa T (1998) DNA synthesis in isolated mitochondrial nucleoids from plasmodia of Physarum polycephalum. Protoplasma 203:221–231

    CAS  Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310:292–296

    CAS  Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell 43:361–368

    CAS  PubMed  Google Scholar 

  • Takano H (2001) Intimate relationship between mtDNA, plasmids, and the fusion of mitochondria. J Plant Res 113:223–229

    Google Scholar 

  • Takano H, Kawano S, Kuroiwa T (1992) Constitutive homologous recombination between mitochondrial DNA and a linear mitochondrial plasmid in Physarum polycephalum. Curr Genet 22:221–227

    CAS  PubMed  Google Scholar 

  • Takano H, Kawano S, Kuroiwa T (1994) Genetic organization of a linear mitochondrial plasmid (mF) that promotes mitochondrial fusion in Physarum polycephalum. Curr Genet 26:506–511

    CAS  PubMed  Google Scholar 

  • Takano H, Kawano S, Suyama Y, Kuroiwa T (1990) Restriction map of the mitochondrial DNA of the true slime mould, Physarum polycephalum: linear form and long tandem duplication. Curr Genet 18:125–131

    CAS  Google Scholar 

  • Takano H, Mori K, Kawano S, Kuroiwa T (1996) Rearrangements of mitochondrial DNA and the mitochondrial fusion-promoting plasmid (mF) are associated with defective mitochondrial fusion in Physarum polycephalum. Curr Genet 29:257–264

    CAS  PubMed  Google Scholar 

  • Takano H, Abe T, Sakurai R, Moriyama Y, Miyazawa Y, et al (2001) The complete DNA sequence of the mitochondrial genome of Physarum polycephalum. Mol Gen Genet 264:539–545

    CAS  PubMed  Google Scholar 

  • Turner G, Earl AJ, Greaves DR (1982) Interspecies variation and recombination of mitochondrial DNA in the Aspergillus nidulans species group and the selection of species-specific sequences by nuclear background. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 411–414

    Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Griffiths AJF (1993) Plasmid suppressors active in the sexual cycle of Neurospora intermedia. Genetics 135:993–1002

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. T. Kuroiwa (Department of Life Science, College of Science, Rikkyo University) for helpful discussions and Dr. H. Takano (Department of Biological Science, Faculty of Science, Kumamoto University) for helpful technical advice. This study was supported by grants to S.K. for Scientific Research in Priority Areas (nos. 13440246, 15370027) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Kawano.

Additional information

Communicated by M. Brunner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, H., Moriyama, Y. & Kawano, S. Rearrangements in the Physarum polycephalum mitochondrial genome associated with a transition from linear mF-mtDNA recombinants to circular molecules. Curr Genet 47, 100–110 (2005). https://doi.org/10.1007/s00294-004-0540-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0540-6

Keywords

Navigation