Skip to main content
Log in

Mapping of sporulation-specific functions in the yeast syntaxin gene SSO1

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The yeast Saccharomyces cerevisiae has two closely related plasma membrane syntaxins, Sso1p and Sso2p, which together provide an essential function in vegetative cells. However, Sso1p is also specifically needed during sporulation; and this function cannot be provided by Sso2p. We used fusions between SSO1 and SSO2 to map the sporulation-specific function of SSO1. We found that the two N-terminal α-helices Ha and Hb of Sso1p are important for sporulation, since it is reduced 8-fold for fusions where Ha and Hb are derived from Sso2p. In contrast, the C-terminal half of Sso1p does not seem to be specifically required for sporulation. Surprisingly, we further found that the 3′ untranslated region (3′UTR) of SSO1 is essential for sporulation. Western blots failed to reveal a preferential expression of Sso1p in sporulating cells, indicating that effects on gene expression are unlikely to explain why the SSO1 3′UTR is needed for sporulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalto MK, Ronne H, Keränen S (1993) Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J 12:4095–4104

    CAS  PubMed  Google Scholar 

  • Aalto MK, Jäntti J, Ostling J, Keränen S, Ronne H (1997) Mso1p: a yeast protein that functions in secretion and interacts physically and genetically with Sec1p. Proc Natl Acad Sci USA 94:7331–7336

    Article  CAS  PubMed  Google Scholar 

  • Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    CAS  PubMed  Google Scholar 

  • Brennwald P, Kearns B, Champion K, Keränen S, Bankaitis V, Novick P (1994) Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79:245–258

    CAS  PubMed  Google Scholar 

  • Carr CM (2001) The taming of the SNARE. Nat Struct Biol 8:186–188

    Article  CAS  PubMed  Google Scholar 

  • Chartrand P, Meng X-H, Singer RH, Long RM (1999) Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter in vivo. Curr Biol 9:333–336

    CAS  PubMed  Google Scholar 

  • Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106

    CAS  PubMed  Google Scholar 

  • Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Südhof TC, Rizo J (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382

    Article  CAS  PubMed  Google Scholar 

  • Dulubova I, Yamaguchi T, Wang Y, Südhof TC, Rizo J (2001) Vam3p structure reveals conserved and divergent properties of syntaxins. Nat Struct Biol 8:258–264

    Article  CAS  PubMed  Google Scholar 

  • Enyenihi AH, Saunders WS (2003) Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163:47–54

    CAS  PubMed  Google Scholar 

  • Fernandez I, Ubach J, Dulubova I, Zhang X, Südhof TC, Rizo J (1998) Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94:841–849

    CAS  PubMed  Google Scholar 

  • Gonzalez I, Buonomo SBC, Nasmyth K, Ashen U von (1999) ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr Biol 9:337–340

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Grubmüller H (2002) Membrane fusion. Curr Opin Cell Biol 14:488–495

    Google Scholar 

  • Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    CAS  PubMed  Google Scholar 

  • Jäntti J, Aalto MK, Öyen M, Sundqvist L, Keränen S, Ronne H (2002) Characterization of temperature-sensitive mutations in the yeast syntaxin 1 homologues Sso1p and Sso2p, and evidence of a distinct function for Sso1p in sporulation. J Cell Sci 115:409–420

    PubMed  Google Scholar 

  • Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972

    Article  CAS  PubMed  Google Scholar 

  • Long RM, Singer RH, Meng X, Gonzalez I, Nasmyth K, Jansen RP (1997) Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277:383–387

    CAS  PubMed  Google Scholar 

  • Munson M, Chen X, Cocina AE, Schultz SM, Hughson FM (2000) Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly. Nat Struct Biol 7:894–902

    Article  CAS  PubMed  Google Scholar 

  • Neiman AM (1998) Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol 140:29–37

    CAS  PubMed  Google Scholar 

  • Neiman AM, Katz L, Brennwald PJ (2000) Identification of domains required for developmentally regulated SNARE function in Saccharomyces cerevisiae. Genetics 155:1643–1655

    CAS  PubMed  Google Scholar 

  • Protopopov V, Govindan B, Novick P, Gerst JE (1993) Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74:855–861

    CAS  PubMed  Google Scholar 

  • Sanders JD, Yang Y, Liu Y (1998) Differential turnover of syntaxin and SNAP-25 during synaptogenesis in cultured cerebellar granule neurons. J Neurosci Res 53:670–676

    Article  CAS  PubMed  Google Scholar 

  • Shepard KA, Gerber AP, Jambhekar A, Takizawa PA, Brown PO, Herschlag D, DeRisi JL, Vale RD (2003) Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci USA 100:11429–11434

    Article  CAS  PubMed  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    Article  CAS  PubMed  Google Scholar 

  • Takizawa PA, Sil A, Swedlow JR, Herskowitz I, Vale RD (1997) Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389:90–93

    CAS  PubMed  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    PubMed  Google Scholar 

  • Weimbs T, Low SH, Chapin SJ, Mostov KE, Bucher P, Hofmann K (1997) A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc Natl Acad Sci USA 94:3046–3051

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Steegmaier M, Gonzalez LC Jr, Scheller RH (2000) nSec1 binds a closed conformation of syntaxin 1A. J Cell Biol 148:247–252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Cancer Society and the Erik and Mai Pehrsson Foundation, by the research program “VTT Industrial Biotechnology” (Academy of Finland, Finnish Centre of Excellence program 2000–2005, project number 64330), and by the Academy of Finland (project number 49894).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Ronne.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öyen, M., Jäntti, J., Keränen, S. et al. Mapping of sporulation-specific functions in the yeast syntaxin gene SSO1 . Curr Genet 45, 76–82 (2004). https://doi.org/10.1007/s00294-003-0462-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0462-8

Keywords

Navigation