Skip to main content
Log in

Adaptation to environmental pH in Candida albicans and its relation to pathogenesis

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 07 August 2003

Abstract.

For microorganisms that grow over a wide range of extracellular pH, systems must have evolved to sense and respond appropriately. The human opportunistic pathogen Candida albicans colonizes and infects anatomical sites of diverse pH, including the oral and gastro-intestinal tracts and the vaginal cavity. The ability to sense and respond to neutral-alkaline environments is governed by signal transduction pathways, one of which culminates in the activation of the transcription factor, Rim101p. The RIM101/pacC pathway, which governs pH responses and differentiation, has been the focus of study in both Saccharomyces cerevisiae and Aspergillus nidulans. This pathway has been identified in C. albicans and governs pH responses, dimorphism, and pathogenesis. Although C. albicans and S. cerevisiae are related fungi, it is becoming apparent that there are unique aspects of the pH response and the role the RIM101 pathway plays in this response in C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Arst HN Jr, Bignell E, Tilburn J (1994) Two new genes involved in signalling ambient pH in Aspergillus nidulans. Mol Gen Genet 245:787–790

    CAS  PubMed  Google Scholar 

  • Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156:31–44

    CAS  PubMed  Google Scholar 

  • Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J 20:4753–4761

    Article  CAS  PubMed  Google Scholar 

  • Calderone RA (2002) Candida and candidiasis. ASM Press, Washington, D.C.

  • Csank C, et al (1998) Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66:2713–2721

    CAS  PubMed  Google Scholar 

  • Davis D, Edwards JE Jr, Mitchell AP, Ibrahim AS (2000a) Candida albicans RIM101 pH response pathway is required for host–pathogen interactions. Infect Immun 68:5953–5959

    Article  CAS  PubMed  Google Scholar 

  • Davis D, Wilson RB, Mitchell AP (2000b) RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20:971–978

    Article  CAS  PubMed  Google Scholar 

  • Davis DA, Bruno VM, Loza L, Filler SG, Mitchell AP (2002) Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162:1573–1581

    CAS  PubMed  Google Scholar 

  • De Bernardis F, Muhlschlegel FA, Cassone A, Fonzi WA (1998) The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66:3317–3325

    PubMed  Google Scholar 

  • Denison SH, Orejas M, Arst HN Jr (1995) Signaling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem 270:28519–28522

    Article  CAS  PubMed  Google Scholar 

  • Denison SH, et al (1998) Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in Saccharomyces are homologous. Mol Microbiol 30:259–264

    Article  CAS  PubMed  Google Scholar 

  • El Barkani A, et al (2000) Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol 20:4635–4647

    Article  PubMed  Google Scholar 

  • Espeso EA, Penalva MA (1996) Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem 271:28825–28830

    CAS  PubMed  Google Scholar 

  • Espeso EA, et al (1997) Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J Mol Biol 274:466–480

    CAS  PubMed  Google Scholar 

  • Espeso EA, et al (2000) On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO J 19:719–728

    Google Scholar 

  • Filler SG, Swerdloff JN, Hobbs C, Luckett PM (1995) Penetration and damage of endothelial cells by Candida albicans. Infect Immun 63:976–983

    CAS  PubMed  Google Scholar 

  • Fonzi WA (1999) PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol 181:7070–7079

    CAS  PubMed  Google Scholar 

  • Ghannoum MA, Spellberg B, Saporito-Irwin SM, Fonzi WA (1995) Reduced virulence of Candida albicans PHR1 mutants. Infect Immun 63:4528–4530

    CAS  PubMed  Google Scholar 

  • Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291:189–191

    Article  CAS  PubMed  Google Scholar 

  • Heinz WJ, et al (2000) Molecular responses to changes in the environmental pH are conserved between the fungal pathogens Candida dubliniensis and Candida albicans. Int J Med Microbiol 290:231–238

    CAS  PubMed  Google Scholar 

  • Kottom TJ, Thomas CF Jr, Limper AH (2001) Characterization of Pneumocystis carinii PHR1, a pH-regulated gene important for cell wall integrity. J Bacteriol 183:6740–6745

    Article  CAS  PubMed  Google Scholar 

  • Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23:677–686

    Article  CAS  PubMed  Google Scholar 

  • Lamb TM, Xu W, Diamond A, Mitchell AP (2001) Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276:1850–1856

    Article  CAS  PubMed  Google Scholar 

  • Li W, Mitchell AP (1997) Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73

    CAS  PubMed  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    CAS  PubMed  Google Scholar 

  • Maccheroni W Jr, May GS, Martinez-Rossi NM, Rossi A (1997) The sequence of palF, an environmental pH response gene in Aspergillus nidulans. Gene 194:163–167

    Article  CAS  PubMed  Google Scholar 

  • Madzak C, Blanchin-Roland S, Cordero Otero RR, Gaillardin C (1999) Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. Microbiology 145:75–87

    CAS  PubMed  Google Scholar 

  • Mayer CL, Filler SG, Edwards JE Jr (1992) Candida albicans adherence to endothelial cells. Microvasc Res 43:218–226

    CAS  PubMed  Google Scholar 

  • Mingot JM, et al (1999) Specificity determinants of proteolytic processing of Aspergillus PacC transcription factor are remote from the processing site, and processing occurs in yeast if pH signalling is bypassed. Mol Cell Biol 19:1390–1400

    Google Scholar 

  • Mingot JM, Espeso EA, Diez E, Penalva MA (2001) Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor. Mol Cell Biol 21:1688–1699

    Article  CAS  PubMed  Google Scholar 

  • Mouyna I, et al (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

    Article  CAS  PubMed  Google Scholar 

  • Muhlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967

    Google Scholar 

  • Munn AL, Riezman H (1994) Endocytosis is required for the growth of vacuolar H(+)-ATPase-defective yeast: identification of six new END genes. J Cell Biol 127:373–386

    CAS  PubMed  Google Scholar 

  • Nakazawa T, Horiuchi H, Ohta A, Takagi M (1998) Isolation and characterization of EPD1, an essential gene for pseudohyphal growth of a dimorphic yeast, Candida maltosa. J Bacteriol 180:2079–2086

    CAS  PubMed  Google Scholar 

  • Nakazawa T, Takahashi M, Horiuchi H, Ohta A, Takagi M (2000) Cloning and characterization of EPD2, a gene required for efficient pseudohyphal formation of a dimorphic yeast, Candida maltosa. Biosci Biotechnol Biochem 64:369–377

    CAS  PubMed  Google Scholar 

  • Negrete-Urtasun S, Denison SH, Arst HN Jr (1997) Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs. J Bacteriol 179:1832–1835

    CAS  PubMed  Google Scholar 

  • Negrete-Urtasun S, et al (1999) Ambient pH signal transduction in Aspergillus: completion of gene characterization. Mol Microbiol 33:994–1003

    Article  CAS  PubMed  Google Scholar 

  • Odds FC (1988) Candida and candidosis, 2nd edn. Bailiere Tindall, London

  • Orejas M, Espeso EA, Tilburn J, Sarkar S, Arst HN Jr, Penalva MA (1995) Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev 9:1622–1632

    CAS  PubMed  Google Scholar 

  • Park SH, Koh SS, Chun JH, Hwang HJ, Kang HS (1999) Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19:2044–2050

    CAS  PubMed  Google Scholar 

  • Phan QT, Belanger PH, Filler SG (2000) Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun 68:3485–3490

    Article  CAS  PubMed  Google Scholar 

  • Popolo L, Vai M (1998) Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phr1 mutant. J Bacteriol 180:163–166

    CAS  PubMed  Google Scholar 

  • Popolo L, et al (1993) Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae GPI-anchored protein gp115 in morphogenesis and cell separation. J Bacteriol 175:1879–1885

    CAS  PubMed  Google Scholar 

  • Porta A, Ramon AM, Fonzi WA (1999) PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol 181:7516–7523

    CAS  PubMed  Google Scholar 

  • Porta A, Wang Z, Ramon A, Muhlschlegel FA, Fonzi WA (2001) Spontaneous second-site suppressors of the filamentation defect of prr1Δ mutants define a critical domain of Rim101p in Candida albicans. Mol Genet Genomics 266:624–631

    Article  CAS  PubMed  Google Scholar 

  • Ramon AM, Porta A, Fonzi WA (1999) Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol 181:7524–7530

    PubMed  Google Scholar 

  • Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613

    Google Scholar 

  • Sentandreu M, Elorza MV, Sentandreu R, Fonzi WA (1998) Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans. J Bacteriol 180:282–289

    CAS  PubMed  Google Scholar 

  • Su SS, Mitchell AP (1993a) Identification of functionally related genes that stimulate early meiotic gene expression in yeast. Genetics 133:67–77

    CAS  PubMed  Google Scholar 

  • Su SS, Mitchell AP (1993b) Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucleic Acids Res 21:3789–3797

    CAS  PubMed  Google Scholar 

  • Tenney KA, Glover CV (1999) Transcriptional regulation of the S. cerevisiae ENA1 gene by casein kinase II. Mol Cell Biochem 191:161–167

    Article  CAS  PubMed  Google Scholar 

  • Tilburn J, et al (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790

    CAS  PubMed  Google Scholar 

  • Viudes A, Perea S, Lopez-Ribot JL (2001) Identification of continuous B-cell epitopes on the protein moiety of the 58-kiloDalton cell wall mannoprotein of Candida albicans belonging to a family of immunodominant fungal antigens. Infect Immun 69:2909–2919

    Article  CAS  PubMed  Google Scholar 

  • Weig M, Haynes K, Rogers TR, Kurzai O, Frosch M, Muhlschlegel FA (2001) A GAS-like gene family in the pathogenic fungus Candida glabrata. Microbiology 147:2007–2019

    CAS  PubMed  Google Scholar 

  • Xu W, Mitchell AP (2001) Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J Bacteriol 183:6917–6923

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Davis.

Additional information

Communicated by S. Hohmann

An Erratum to this article can be found at http://dx.doi.org/10.1007/s00294-003-0431-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44, 1–7 (2003). https://doi.org/10.1007/s00294-003-0415-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0415-2

Keywords.

Navigation