Skip to main content

Advertisement

Log in

Mechanical, viscoelastic and sorption behaviour of acrylonitrile–butadiene–styrene composites with 0D and 1D nanofillers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work presents an investigation on the morphology, mechanical, viscoelastic and transport properties of acrylonitrile–butadiene–styrene (ABS) nanocomposites reinforced with nanosilica (NS) and multiwalled carbon nanotubes (MWCNTs). The nanofillers content was varied from 1 to 5 wt%. Morphological and mechanical investigations revealed  a better dispersion and effective stress transfer in carboxyl-treated MWCNT composites with respect to silane-treated NS. The highest values of tensile strength and Young’s modulus were reached for 5 wt% of MWCNT. Theoretical modelling of elastic modulus of the composites with carbon nanotubes (CNT) was in good agreement with experimental data. On the other hand, in the case of composites with NS an interfacial modulus of 2.5 GPa was assumed in the model to approach the experimental data. The highest value of storage modulus was reported at a MWCNT content of 5 wt% followed by 3 wt% which discloses the stiffening effect of long curly CNTs in comparison with NS. The damping behaviour indicated a lowering and broadening of tan δ peak induced by CNT. The storage modulus and damping behaviour of the nanocomposites were analysed using theoretical models in which aspect ratio, stiffening effect, adhesion and entanglement phenomena were included. The lowest solvent diffusivity and permeability was exhibited by composite with MWCNT at 5 wt% owing to the tortuosity, higher adhesion and aspect ratio of the filler and revealed a decrement in permeability by 62% with regard to neat ABS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kumar V, Ramkumar J, Aravindan S et al (2009) Fabrication and characterization of ABS nano composite reinforced by nano sized alumina particulates. Int J Plast Technol 13:133–149. https://doi.org/10.1007/s12588-009-0011-5

    Article  CAS  Google Scholar 

  2. Al-Saleh MH, Al-Saidi BA, Al-Zoubi RM (2016) Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile–styrene–butadiene nanocomposites. Polym 89:12–17. https://doi.org/10.1016/j.polymer.2016.01.053

    Article  CAS  Google Scholar 

  3. Abedini A, Asiyabi T, Campbell HR et al (2019) On fabrication and characteristics of injection molded ABS/Al2O3 nanocomposites. Int J Adv Manf Technol 102:1747–1758

    Article  Google Scholar 

  4. Rasana N, Jayanarayanan K (2019) Experimental and micromechanical modeling of fracture toughness: MWCNT-reinforced polypropylene/glass fiber hybrid composites. J Thermoplast Compos Mater 32:1031–1055. https://doi.org/10.1177/0892705718785687

    Article  CAS  Google Scholar 

  5. Liang W, Duan Z, Kuo S et al (2018) Mechanical performance of nano-Al2O3-modified composites at cryogenic and room temperatures. Polym Compos 39:3006–3012

    Article  CAS  Google Scholar 

  6. Chandra A, Turng LS, Ke Li et al (2011) Fracture behavior and optical properties of melt compounded semi-transparent polycarbonate (PC)/alumina nanocomposites. Compos Part A: Appl Sci Manuf 42:1903–1909. https://doi.org/10.1016/j.compositesa.2011.08.015

    Article  CAS  Google Scholar 

  7. Yu W, Xie H, Chen L et al (2017) Synergistic thermal conductivity enhancement of PC/ABS composites containing alumina/magnesia/graphene nanoplatelets. Polym Compos 38:2221–2227

    Article  CAS  Google Scholar 

  8. Zakaria MR, Akil HM, Kudus MH et al (2014) Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Compos Part A: Appl Sci Manuf 66:109–116. https://doi.org/10.1016/j.compositesa.2014.07.008

    Article  CAS  Google Scholar 

  9. Lin Y, Chen Y, Zeng Z et al (2015) Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos Part A: Appl Sci Manuf 70:35–44. https://doi.org/10.1016/j.compositesa.2014.12.008

    Article  CAS  Google Scholar 

  10. Hammani S, Barhoum A, Bechelany M (2018) Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties. J Mater Sci 53:1911–1921. https://doi.org/10.1007/s10853-017-1654-9

    Article  CAS  Google Scholar 

  11. Shofner ML, Rodrı́guez-Macı́as FJ, Vaidyanathan R et al (2003) Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication. Compos Part A: Appl Sci Manuf 34:1207–1217. https://doi.org/10.1016/j.compositesa.2003.07.002

    Article  CAS  Google Scholar 

  12. Khan AN, Waheed Q, Jan R et al (2018) Experimental and theoretical correlation of reinforcement trends in acrylonitrile butadiene styrene/single-walled carbon nanotubes hybrid composites. Polym Compos 39(S2):E902–E908. https://doi.org/10.1002/pc.24321

    Article  CAS  Google Scholar 

  13. Jouyandeh M, Karami Z, Jazani OM et al (2019) Curing epoxy resin with anhydride in the presence of halloysite nanotubes: the contradictory effects of filler concentration. Prog Org Coat 126:129–135. https://doi.org/10.1016/j.porgcoat.2018.10.007

    Article  CAS  Google Scholar 

  14. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: Recent advances and challenges. Prog Polym Sci 51:127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001

    Article  CAS  Google Scholar 

  15. Jenifer A, Rasana N, Jayanarayanan K (2018) Synergistic effect of the inclusion of glass fibers and halloysite nanotubes on the static and dynamic mechanical, thermal and flame retardant properties of polypropylene. Mater Res Express 5:065308. https://doi.org/10.1088/2053-1591/aac67d

    Article  CAS  Google Scholar 

  16. Pedrazzoli D, Pegoretti A (2014) Hybridization of short glass fiber polypropylene composites with nanosilica and graphite nanoplatelets. J Reinf Plast and Comp 33:1682–1695. https://doi.org/10.1177/0731684414542668

    Article  CAS  Google Scholar 

  17. Gao A, Zhao F, Wang F et al (2019) Highly conductive and light-weight acrylonitrile-butadiene-styrene copolymer/reduced graphene nanocomposites with segregated conductive structure. Compos Part A: Appl Sci Manuf 122:1–7. https://doi.org/10.1016/j.compositesa.2019.04.019

    Article  CAS  Google Scholar 

  18. Yamamoto BE, Trimble AZ, Minei B et al (2019) Development of multifunctional nanocomposites with 3-D printing additive manufacturing and low graphene loading. J Thermoplast Compos Mater 32:383–408. https://doi.org/10.1177/0892705718759390

    Article  CAS  Google Scholar 

  19. Abraham J, Thomas J, Kalarikkal N et al (2018) Static and dynamic mechanical characteristics of ionic liquid modified MWCNT-SBR composites: theoretical perspectives for the nanoscale reinforcement mechanism. J Phys Chem B 122:1525–1536. https://doi.org/10.1021/acs.jpcb.7b10479

    Article  CAS  PubMed  Google Scholar 

  20. Schmitz DP, Silva TI, Ramoa SD et al (2018) Hybrid composites of ABS with carbonaceous fillers for electromagnetic shielding applications. J Appl Polym Sci 135:46546. https://doi.org/10.1002/app.46546

    Article  CAS  Google Scholar 

  21. Kyratsis P, Tzetzis D (2018) Investigation of the mechanical properties of acrylonitrile butadiene styrene (ABS)-nanosilica reinforced nanocomposites for fused filament fabrication 3D printing. In IOP Conf Series: Mater Sci Eng 416:012086. https://doi.org/10.1088/1757-899X/416/1/012086

    Article  Google Scholar 

  22. Xiao MZ, Wang YZ, Yeh JT (2014) Properties of Recycled ABS Modified with Nanosilica. Chin J Coll Poly 2014:03

    Google Scholar 

  23. Rostamiyan Y, Bakhshi A (2019) Study on Compression and Flexural Behavior of ABS-SiO2 Poly-mer Matrix Composite Fabricated by Hot Extrusion. Mech Adv Compos Struct 6:239–247

    Google Scholar 

  24. Jyoti J, Basu S, Singh BP, Dhakate SR (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos Part B: Eng 83:58–65. https://doi.org/10.1016/j.compositesb.2015.08.055

    Article  CAS  Google Scholar 

  25. Jyoti J, Singh BP, Arya AK et al (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, and reinforcement and C factor. RSC Adv 6:3997–4006. https://doi.org/10.1039/c5ra25561a

    Article  CAS  Google Scholar 

  26. Al-Saleh MH, Al-Anid HK, Husain YA et al (2013) Impedance characteristics and conductivity of CNT/ABS nanocomposites. J Phys D: Appl Phys 46:385305. https://doi.org/10.1088/0022-3727/46/38/385305

    Article  CAS  Google Scholar 

  27. Dul S, Fambri L, Pegoretti A (2018) Filaments production and fused deposition modelling of ABS/carbon nanotubes composites. Nanomaterials 8:49. https://doi.org/10.3390/nano8010049

    Article  CAS  PubMed Central  Google Scholar 

  28. Kapoor S, Goyal M, Jindal P (2017) Effect of multi-walled carbon nanotubes (MWCNT) on mechanical properties of acrylonitrile butadiene styrene (ABS) nano-composite. Indian J Sci Technol 10(17):1–6

    Article  Google Scholar 

  29. Gardea F, Cole DP, Glaz B, Riddick JC (2019) Energy dissipation characteristics of additively manufactured CNT/ABS nanocomposites. Rapid Prototyp J. https://doi.org/10.1108/RPJ-08-2018-0204

    Article  Google Scholar 

  30. Lin OH, Akil HM, Mohd Ishak ZA (2011) Surface-activated nanosilica treated with silane coupling agents/polypropylene composites: mechanical, morphological, and thermal studies. Polym compos 32:1568–1583. https://doi.org/10.1002/pc.21190

    Article  CAS  Google Scholar 

  31. Wang R, Kuan HC, Qiu A et al (2020) A facile approach to the scalable preparation of thermoplastic/carbon nanotube composites. Nanotechnology 31:195706. https://doi.org/10.1088/1361-6528/ab5a28

    Article  CAS  PubMed  Google Scholar 

  32. Yonghong D, Jinghong Y, Liang G (2019) Surface carboxylation of multi-walled carbon nanotubes and its properties of flame retardant ABS. Eng Plast Appl 47:1–6

    Google Scholar 

  33. Zare Y (2015) Assumption of interphase properties in classical Christensen–Lo model for Young’s modulus of polymer nanocomposites reinforced with spherical nanoparticles. RSC Adv 5:95532–95538. https://doi.org/10.1039/c5ra19330c

    Article  CAS  Google Scholar 

  34. Ji XL, Jing JK, Jiang W et al (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42:983–993. https://doi.org/10.1002/pen.11007

    Article  CAS  Google Scholar 

  35. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys. https://doi.org/10.1088/0508-3443/3/3/302

    Article  Google Scholar 

  36. Coleman JN, Khan U, Blau WJ et al (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652. https://doi.org/10.1016/j.carbon.2006.02.038

    Article  CAS  Google Scholar 

  37. Lee KY, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27. https://doi.org/10.1016/j.compscitech.2014.08.032

    Article  CAS  Google Scholar 

  38. Taha I, Abdin YF (2011) Modeling of strength and stiffness of short randomly oriented glass fiber—polypropylene composites. J Compos Mater 45:1805–1821. https://doi.org/10.1177/0021998310389089

    Article  CAS  Google Scholar 

  39. Jiang L, Lam YC, Tam KC et al (2005) Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer 46:243–252. https://doi.org/10.1016/j.polymer.2004.11.001

    Article  CAS  Google Scholar 

  40. Carolan D, Ivankovic A, Kinloch AJ et al (2017) Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices. J Mater Sci 52:1767–1788. https://doi.org/10.1007/s10853-016-0468-5

    Article  CAS  Google Scholar 

  41. Arivazhagan A, Masood SH (2012) Dynamic mechanical properties of ABS material processed by fused deposition modelling. Int J Eng Res Appl 2:2009–2014

    Google Scholar 

  42. Pandey AK, Kumar R, Kachhavah VS et al (2016) Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile–butadiene–styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:50559–50571. https://doi.org/10.1039/C6RA09236E

    Article  CAS  Google Scholar 

  43. Rasana N, Jayanarayanan K (2018) Polypropylene/short glass fiber/nanosilica hybrid composites: evaluation of morphology, mechanical, thermal, and transport properties. Polym Bull 75:2587–2605. https://doi.org/10.1007/s00289-017-2173-1

    Article  CAS  Google Scholar 

  44. Joseph PV, Mathew G, Joseph K et al (2003) Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos Part A: Appl Sci Manuf 34:275–290. https://doi.org/10.1016/S1359-835X(02)00020-9

    Article  CAS  Google Scholar 

  45. Kajohnchaiyagual J, Jubsilp C, Dueramae I et al (2014) Thermal and mechanical properties enhancement obtained in highly filled alumina-polybenzoxazine composites. Polym Compos 35:2269–2279. https://doi.org/10.1002/pc.22892

    Article  CAS  Google Scholar 

  46. Ashok N, Balachandran M, Das NC et al (2021) Nanoreinforcement mechanism of organomodified layered silicates in EPDM/CIIR blends: experimental analysis and theoretical perspectives of static mechanical and viscoelastic behavior. Compos Inter 28:35–62. https://doi.org/10.1080/09276440.2020.1736879

    Article  CAS  Google Scholar 

  47. Praveen S, Chattopadhyay PK, Albert PA et al (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos Part A: Appl Sci Manuf 40:309–316. https://doi.org/10.1016/j.compositesa.2008.12.008

    Article  CAS  Google Scholar 

  48. Elhaouzi F, Nourdine A, Brosseau C et al (2019) Hyperelastic behavior and dynamic mechanical relaxation in carbon black-polymer composites. Polym Compos 40:3005–3011. https://doi.org/10.1002/pc.25142

    Article  CAS  Google Scholar 

  49. Jayanarayanan K, Rasana N, Mishra RK (2017) Dynamic mechanical thermal analysis of polymer nanocomposites. In Thermal and rheological measurement techniques for nanomaterials characterization. Elsevier 2017:123–157. https://doi.org/10.1016/B978-0-323-46139-9.00006-2

    Article  Google Scholar 

  50. Jayanarayanan K, Thomas S, Joseph K (2016) Effect of blend ratio on the dynamic mechanical and thermal degradation behavior of polymer–polymer composites from low density polyethylene and polyethylene terephthalate. Iran Polym J 25:373–384. https://doi.org/10.1007/s13726-016-0429-5

    Article  CAS  Google Scholar 

  51. Tahreen N, Masud AK (2012) Investigation of the mechanical properties of polyethylene/carbon nanotube composite by molecular dynamics simulation. Int J Nano Biomater 4:54–68. https://doi.org/10.1504/IJNBM.2012.048217

    Article  CAS  Google Scholar 

  52. Idicula M, Malhotra SK, Joseph K et al (2005) Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos Sci Technol 65:1077–1087. https://doi.org/10.1016/j.compscitech.2004.10.023

    Article  CAS  Google Scholar 

  53. Verma D, Goh KL (2019) Natural fiber-reinforced polymer composites: application in marine environments. In Biomass, Biopolymer-Based Materials, and Bioenergy Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102426-3.00003-5

  54. Dhakal HN, MacMullen J, Zhang ZY (2016) Moisture measurement and effects on properties of marine composites. In Marine Applications of Advanced Fibre-Reinforced Composites Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-250-1.00005-3

  55. Abraham J, Maria HJ, George SC et al (2015) Transport characteristics of organic solvents through carbon nanotube filled styrene butadiene rubber nanocomposites: the influence of rubber–filler interaction, the degree of reinforcement and morphology. Phys Chem Chem Phys 17:11217–11228. https://doi.org/10.1039/c5cp00719d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Testing and Instrumentation Centre (STIC), Kochi, India, for TEM analysis. The authors are grateful to Centre of excellence in Advanced Materials and Green Technologies (CoE-AMGT) Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, for SEM analysis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for- profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rasana.

Ethics declarations

Conflicts of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasana, N., Jayanarayanan, K., Pegoretti, A. et al. Mechanical, viscoelastic and sorption behaviour of acrylonitrile–butadiene–styrene composites with 0D and 1D nanofillers. Polym. Bull. 79, 8369–8395 (2022). https://doi.org/10.1007/s00289-021-03896-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03896-3

Keywords

Navigation