Skip to main content
Log in

Synthesis and characterization of modified resorcinol formaldehyde aerogel as a novel absorbent to remove oxytetracycline and chlortetracycline antibiotics from wastewater

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Organic resorcinol formaldehyde (RF) aerogel was synthesized via the sol–gel process. The synthesized RF aerogel was modified by the incorporation of 1 and 3 wt.% of amine-functionalized graphene oxide (GO) during the synthesis process to prepare RF-GOA. The FTIR results showed that the functionalization of aerogels with amine was successfully conducted. The FESEM images showed that the interconnected 3D porous structure was created in the modified samples GO plates without affecting the porosity of the structure. The UV–Vis results showed that the RF-GOA1 and RF-GOA3 have improved the elimination amounts of antibiotics from 51 to 77% for oxytetracycline and from 65 to 94% for chlortetracycline. The absorption capacity for the neat RF aerogel, RF-GOA1, and RF-GOA3 was determined to be 258, 387, and 278 mg/g for oxytetracycline antibiotics and 326, 472, and 467 mg/g for the chlortetracycline antibiotics, respectively. Optimal pH for RF aerogel, RF-GOA1, and RF-GOA3 was obtained to be 6, 4, and 2 for oxytetracycline and 4, 2, and 6 for chlortetracycline, respectively. In addition, the adsorption data for modified aerogels were suited by the pseudo-second-order model, and the results showed that chemical adsorption was involved in the rapid absorption of antibiotics on modified aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ferfera-Harrar H, Aouaz N, Dairi N (2016) Environmental-sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties. Polym Bull 73(3):815–840. https://doi.org/10.1007/s00289-015-1521-2

    Article  CAS  Google Scholar 

  2. Liu X, Lu S, Guo W, Xi B, Wang W (2018) Antibiotics in the aquatic environments: a review of lakes, China. Sci Total Environ 627:1195–1208. https://doi.org/10.1016/j.scitotenv.2018.01.271

    Article  CAS  PubMed  Google Scholar 

  3. Qiao M, Ying G-G, Singer AC, Zhu Y-G (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172. https://doi.org/10.1016/j.envint.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  4. Adewuyi A, Oderinde RA (2019) Chemically modified vermiculite clay: a means to remove emerging contaminant from polluted water system in developing nation. Polym Bull 76(10):4967–4989. https://doi.org/10.1007/s00289-018-2643-0

    Article  CAS  Google Scholar 

  5. Martins RC, Quinta-Ferreira RM (2011) Remediation of phenolic wastewaters by advanced oxidation processes (AOPs) at ambient conditions: comparative studies. Chem Eng Sci 66(14):3243–3250. https://doi.org/10.1016/j.ces.2011.02.023

    Article  CAS  Google Scholar 

  6. Sillanpää MET, Agustiono Kurniawan T, Lo W-h (2011) Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP). Chemosphere 83(11):1443–1460. https://doi.org/10.1016/j.chemosphere.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  7. Neolaka YAB, Lawa Y, Naat JN, Pau Riwu AA, Darmokoesoemo H, Supriyanto G, Holdsworth CI, Amenaghawon AN, Kusuma HS (2020) A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater. React Funct Polym 147:104451. https://doi.org/10.1016/j.reactfunctpolym.2019.104451

    Article  CAS  Google Scholar 

  8. Elizalde-Velázquez A, Gómez-Oliván LM, Galar-Martínez M, Islas-Flores H, Dublán-García O, SanJuan-Reyes N (2016) Amoxicillin in the aquatic environment, its fate and environmental risk. Environ Health Risk-Hazard Factors Living Species 1:247–267

    Google Scholar 

  9. Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52(1):5–7. https://doi.org/10.1093/jac/dkg293

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Wang Z, Fan M, Tong P, Sun J, Dong S, Sun J (2019) Ultra-light and compressible 3D BiOCl/ RGO aerogel with enriched synergistic effect of adsorption and photocatalytic degradation of oxytetracycline. J Market Res 8(5):4577–4587. https://doi.org/10.1016/j.jmrt.2019.08.002

    Article  CAS  Google Scholar 

  11. Wang J, Yao Q, Sheng C, Jin C, Sun Q (2017) One-step preparation of graphene oxide/cellulose nanofibril hybrid aerogel for adsorptive removal of four kinds of antibiotics. J Nanomater 2017:5150613. https://doi.org/10.1155/2017/5150613

    Article  CAS  Google Scholar 

  12. Corcoran E (2010) Sick water?: the central role of wastewater management in sustainable development: a rapid response assessment. UNEP/Earthprint

  13. Liu C-X, Xu Q-M, Yu S-C, Cheng J-S, Yuan Y-J (2020) Bio-removal of tetracycline antibiotics under the consortium with probiotics Bacillus clausii T and Bacillus amyloliquefaciens producing biosurfactants. Sci Total Environ 710:136329. https://doi.org/10.1016/j.scitotenv.2019.136329

    Article  CAS  PubMed  Google Scholar 

  14. Yu L-l, Luo Z-f, Zhang Y-y, Wu S-c, Yang C, Cheng J-h (2019) Contrastive removal of oxytetracycline and chlortetracycline from aqueous solution on Al-MOF/GO granules. Environ Sci Pollut Res 26(4):3685–3696. https://doi.org/10.1007/s11356-018-3874-1

    Article  CAS  Google Scholar 

  15. Wang Y-J, Jia D-A, Sun R-J, Zhu H-W, Zhou D-M (2008) Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ Sci Technol 42(9):3254–3259. https://doi.org/10.1021/es702641a

    Article  CAS  PubMed  Google Scholar 

  16. Okoli CP, Naidoo EB, Ofomaja AE (2018) Role of synthesis process variables on magnetic functionality, thermal stability, and tetracycline adsorption by magnetic starch nanocomposite. Environ Nanotechnol Monit Manag 9:141–153. https://doi.org/10.1016/j.enmm.2018.02.001

    Article  Google Scholar 

  17. Li B, Ma J, Zhou L, Qiu Y (2017) Magnetic microsphere to remove tetracycline from water: adsorption, H2O2 oxidation and regeneration. Chem Eng J 330:191–201. https://doi.org/10.1016/j.cej.2017.07.054

    Article  CAS  Google Scholar 

  18. Yang S-F, Lin C-F, Wu C-J, Ng K-K, Yu-Chen Lin A, Andy Hong P-K (2012) Fate of sulfonamide antibiotics in contact with activated sludge—sorption and biodegradation. Water Res 46(4):1301–1308. https://doi.org/10.1016/j.watres.2011.12.035

    Article  CAS  PubMed  Google Scholar 

  19. Arikan OA (2008) Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. J Hazard Mater 158(2):485–490. https://doi.org/10.1016/j.jhazmat.2008.01.096

    Article  CAS  PubMed  Google Scholar 

  20. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  PubMed  Google Scholar 

  21. Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46(7):4074–4082. https://doi.org/10.1021/es204621q

    Article  CAS  PubMed  Google Scholar 

  22. Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z, Chen J (2012) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 4(11):5749–5760. https://doi.org/10.1021/am301053m

    Article  CAS  PubMed  Google Scholar 

  23. Yu F, Li Y, Han S, Ma J (2016) Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153:365–385. https://doi.org/10.1016/j.chemosphere.2016.03.083

    Article  CAS  PubMed  Google Scholar 

  24. Kuncoro EP, Mitha Isnadina DR, Darmokoesoemo H, Dzembarahmatiny F, Kusuma HS (2018) Characterization and isotherm data for adsorption of Cd2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data Brief 16:354–360. https://doi.org/10.1016/j.dib.2017.11.060

    Article  PubMed  Google Scholar 

  25. Kuncoro EP, Isnadina DRM, Darmokoesoemo H, Fauziah OR, Kusuma HS (2018) Characterization, kinetic, and isotherm data for adsorption of Pb2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data Brief 16:622–629. https://doi.org/10.1016/j.dib.2017.11.098

    Article  PubMed  Google Scholar 

  26. Neolaka YAB, Supriyanto G, Darmokoesoemo H, Kusuma HS (2018) Characterization, kinetic, and isotherm data for Cr(VI) removal from aqueous solution by Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure. Data Brief 17:969–979. https://doi.org/10.1016/j.dib.2018.01.076

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neolaka YAB, Supriyanto G, Darmokoesoemo H, Kusuma HS (2018) Characterization, isotherm, and thermodynamic data for selective adsorption of Cr(VI) from aqueous solution by Indonesia (Ende-Flores) natural zeolite Cr(VI)-imprinted-poly(4-VP-co-EGDMA)-ANZ (IIP-ANZ). Data Brief 17:1020–1029. https://doi.org/10.1016/j.dib.2018.01.081

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu J-w, Wu C-r, Zhou C-s, Dong L-l, Liu B-f, Xing D-f, Yang S-s, Fan J-n, Feng L-p, Cao G-l, You S-j (2020) Fate and removal of antibiotic resistance genes in heavy metals and dye co-contaminated wastewater treatment system amended with β-cyclodextrin functionalized biochar. Sci Total Environ 723:137991. https://doi.org/10.1016/j.scitotenv.2020.137991

    Article  CAS  PubMed  Google Scholar 

  29. Zeng Z, Ye S, Wu H, Xiao R, Zeng G, Liang J, Zhang C, Yu J, Fang Y, Song B (2019) Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci Total Environ 648:206–217. https://doi.org/10.1016/j.scitotenv.2018.08.108

    Article  CAS  PubMed  Google Scholar 

  30. Kuncoro EP, Soedarti T, Putranto TWC, Darmokoesoemo H, Abadi NR, Kusuma HS (2018) Characterization of a mixture of algae waste-bentonite used as adsorbent for the removal of Pb2+ from aqueous solution. Data Brief 16:908–913. https://doi.org/10.1016/j.dib.2017.12.030

    Article  PubMed  Google Scholar 

  31. Qasemi M, Afsharnia M, Zarei A, Najafpoor AA, Salari S, Shams M (2018) Phenol removal from aqueous solution using Citrullus colocynthis waste ash. Data Brief 18:620–628. https://doi.org/10.1016/j.dib.2018.03.049

    Article  PubMed  PubMed Central  Google Scholar 

  32. Artiushenko O, Kostenko L, Zaitsev V (2020) Influence of competitive eluting agents on REEs recovery from silica gel adsorbent with immobilized aminodiphosphonic acid. J Environ Chem Eng 8(4):103883. https://doi.org/10.1016/j.jece.2020.103883

    Article  CAS  Google Scholar 

  33. Budiana IGMN, Jasman J, Neolaka YAB, Riwu AAP, Elmsellem H, Darmokoesoemo H, Kusuma HS (2021) Synthesis, characterization and application of cinnamoyl C-phenylcalix[4]resorcinarene (CCPCR) for removal of Cr(III) ion from the aquatic environment. J Mol Liq 324:114776. https://doi.org/10.1016/j.molliq.2020.114776

    Article  CAS  Google Scholar 

  34. Saremi F, Miroliaei MR, Shahabi Nejad M, Sheibani H (2020) Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves. J Mol Liq 318:114126. https://doi.org/10.1016/j.molliq.2020.114126

    Article  CAS  Google Scholar 

  35. Djellabi R, Yang B, Wang Y, Cui X, Zhao X (2019) Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chem Eng J 366:172–180. https://doi.org/10.1016/j.cej.2019.02.035

    Article  CAS  Google Scholar 

  36. Xu X, Schierz A, Xu N, Cao X (2016) Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon. J Colloid Interface Sci 463:55–60. https://doi.org/10.1016/j.jcis.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  37. Darmokoesoemo H, Magdhalena PT, Kusuma H (2016) Telescope snail (Telescopium sp) and Mangrove crab (Scylla sp) as adsorbent for the removal of Pb 2+ from aqueous solutions. Rasayan J Chem 9(4):680–685

    CAS  Google Scholar 

  38. Xu X, Cao X, Zhao L (2013) Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92(8):955–961. https://doi.org/10.1016/j.chemosphere.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  39. Darmokoesoemo H, Setianingsih F, Putranto T, Kusuma H (2016) Horn snail (Telescopium sp) and mud crab (Scylla sp) shells powder as low cost adsorbents for removal of Cu 2+ from synthetic wastewater. Rasayan J Chem 9(4):550–555

    CAS  Google Scholar 

  40. Jiang Q, Xu P, Sun M (2020) Resorcinol–formaldehyde aerogel coating for in-tube solid-phase microextraction of estrogens. J Sep Sci 43(7):1323–1330. https://doi.org/10.1002/jssc.201901025

    Article  CAS  PubMed  Google Scholar 

  41. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266. https://doi.org/10.1021/cr0101306

    Article  CAS  PubMed  Google Scholar 

  42. Conceição FL, Carrott PJM, Ribeiro Carrott MML (2009) New carbon materials with high porosity in the 1–7nm range obtained by chemical activation with phosphoric acid of resorcinol–formaldehyde aerogels. Carbon 47(7):1874–1877. https://doi.org/10.1016/j.carbon.2009.03.026

    Article  CAS  Google Scholar 

  43. Alviso CT, Pekala RW, Gross J, Lu X, Caps R, Fricke J (1996) Resorcinol-formaldehyde and carbon aerogel microspheres. MRS Proc 431:521. https://doi.org/10.1557/PROC-431-521

    Article  CAS  Google Scholar 

  44. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546. https://doi.org/10.1016/j.jcis.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  45. Škrášková K, Santos LHMLM, Šatínský D, Pena A, Montenegro MCBSM, Solich P, Nováková L (2013) Fast and sensitive UHPLC methods with fluorescence and tandem mass spectrometry detection for the determination of tetracycline antibiotics in surface waters. J Chromatogr B 927:201–208. https://doi.org/10.1016/j.jchromb.2012.12.032

    Article  CAS  Google Scholar 

  46. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530. https://doi.org/10.1126/science.1158877

    Article  CAS  PubMed  Google Scholar 

  47. Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Iqbal M, Darmokoesoemo H, Kusuma HS (2020) The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. J Market Res 9(3):6544–6556. https://doi.org/10.1016/j.jmrt.2020.04.040

    Article  CAS  Google Scholar 

  48. Barroso-Bujans F, Cerveny S, Verdejo R, del Val JJ, Alberdi JM, Alegría A, Colmenero J (2010) Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation. Carbon 48(4):1079–1087. https://doi.org/10.1016/j.carbon.2009.11.029

    Article  CAS  Google Scholar 

  49. Li Z-F, Zhang H, Liu Q, Liu Y, Stanciu L, Xie J (2014) Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 71:257–267. https://doi.org/10.1016/j.carbon.2014.01.037

    Article  CAS  Google Scholar 

  50. Sembodo BST, Sulistyo H, Sediawan WB, Fahrurrozi M Effect of sodium carbonate catalyst weight on production of bio-oil via thermochemical liquefaction of corncobs in ethanol-water solution. In: AIP conference proceedings, 2018. vol 1. AIP Publishing LLC, p 030009

  51. Neolaka YAB, Supriyanto G, Kusuma HS (2018) Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution. J Environ Chem Eng 6(2):3436–3443. https://doi.org/10.1016/j.jece.2018.04.053

    Article  CAS  Google Scholar 

  52. Mulik S, Sotiriou-Leventis C (2011) Resorcinol–formaldehyde aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer New York, New York, NY, pp 215–234. https://doi.org/10.1007/978-1-4419-7589-8_11

  53. Taylor SJ, Haw MD, Sefcik J, Fletcher AJ (2014) Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering. Langmuir 30(34):10231–10240. https://doi.org/10.1021/la502394u

    Article  CAS  PubMed  Google Scholar 

  54. Bordjiba T, Mohamedi M, Dao LH (2008) New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv Mater 20(4):815–819. https://doi.org/10.1002/adma.200701498

    Article  CAS  Google Scholar 

  55. Liu M, Xu J, Cheng B, Ho W, Yu J (2015) Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet–graphene oxide composites. Appl Surf Sci 332:121–129. https://doi.org/10.1016/j.apsusc.2015.01.121

    Article  CAS  Google Scholar 

  56. Dubale AA, Su W-N, Tamirat AG, Pan C-J, Aragaw BA, Chen H-M, Chen C-H, Hwang B-J (2014) The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. J Mater Chem A 2(43):18383–18397. https://doi.org/10.1039/C4TA03464C

    Article  CAS  Google Scholar 

  57. Xie A, Dai J, Chen X, Ma P, He J, Li C, Zhou Z, Yan Y (2016) Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation. Chem Eng J 304:609–620. https://doi.org/10.1016/j.cej.2016.06.138

    Article  CAS  Google Scholar 

  58. Rezvani Ghomi E, Esmaeely Neisiany R, Nouri Khorasani S, Dinari M, Ataei S, Koochaki MS, Ramakrishna S (2020) Development of an epoxy self-healing coating through the incorporation of acrylic acid-co-acrylamide copolymeric gel. Prog Org Coat 149:105948. https://doi.org/10.1016/j.porgcoat.2020.105948

    Article  CAS  Google Scholar 

  59. Aubrey DW, Lappert MF, Pyszora H (1960) 1008. Infrared spectra of open-chain boron–nitrogen compounds. J Chem Soc. https://doi.org/10.1039/JR9600005239

    Article  Google Scholar 

  60. Yao Q, Fan B, Xiong Y, Jin C, Sun Q, Sheng C (2017) 3D assembly based on 2D structure of cellulose nanofibril/graphene oxide hybrid aerogel for adsorptive removal of antibiotics in water. Sci Rep 7(1):45914. https://doi.org/10.1038/srep45914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Kruijff B, Demel RA (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochimica et Biophysica Acta (BBA) - Biomembranes 339 (1):57–70. https://doi.org/10.1016/0005-2736(74)90332-0

  62. Ling Z, Wang G, Dong Q, Qian B, Zhang M, Li C, Qiu J (2014) An ionic liquid template approach to graphene–carbon xerogel composites for supercapacitors with enhanced performance. Journal of Materials Chemistry A 2(35):14329–14333. https://doi.org/10.1039/C4TA02223H

    Article  CAS  Google Scholar 

  63. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM, AlOthman ZA, Ahmad I, Ashraf GM, Aliev G (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Sci Rep 6(1):27689. https://doi.org/10.1038/srep27689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Montes-Navajas P, Asenjo NG, Santamaría R, Menéndez R, Corma A, García H (2013) Surface Area Measurement of Graphene Oxide in Aqueous Solutions. Langmuir 29(44):13443–13448. https://doi.org/10.1021/la4029904

    Article  CAS  PubMed  Google Scholar 

  65. Wang S, Ábrahám D, Vallejos-Burgos F, László K, Geissler E, Takeuchi K, Endo M, Kaneko K (2016) Distorted graphene sheet structure-derived latent nanoporosity. Langmuir 32(22):5617–5622. https://doi.org/10.1021/acs.langmuir.6b00483

    Article  CAS  PubMed  Google Scholar 

  66. Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66(8):1494–1501. https://doi.org/10.1016/j.chemosphere.2006.08.028

    Article  CAS  PubMed  Google Scholar 

  67. Chang P-H, Li Z, Yu T-L, Munkhbayer S, Kuo T-H, Hung Y-C, Jean J-S, Lin K-H (2009) Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater 165(1):148–155. https://doi.org/10.1016/j.jhazmat.2008.09.113

    Article  CAS  PubMed  Google Scholar 

  68. Rivera-Utrilla J, Gómez-Pacheco CV, Sánchez-Polo M, López-Peñalver JJ, Ocampo-Pérez R (2013) Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J Environ Manag 131:16–24. https://doi.org/10.1016/j.jenvman.2013.09.024

    Article  CAS  Google Scholar 

  69. Li N, Zhou L, Jin X, Owens G, Chen Z (2019) Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J Hazard Mater 366:563–572. https://doi.org/10.1016/j.jhazmat.2018.12.047

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodratollah Hashemi Motlagh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzadi, A., Hashemi Motlagh, G., Rezvani Ghomi, E. et al. Synthesis and characterization of modified resorcinol formaldehyde aerogel as a novel absorbent to remove oxytetracycline and chlortetracycline antibiotics from wastewater. Polym. Bull. 79, 6309–6341 (2022). https://doi.org/10.1007/s00289-021-03812-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03812-9

Keywords

Navigation