Skip to main content
Log in

Dielectric relaxation, XPS and structural studies of polyethylene oxide/iodine complex composite films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyethylene oxide (PEO) complexed with molecular iodine (I2) forming PEO/I2 complex composites stand‐free films were investigated using dielectric relaxation, X-ray photoelectron spectroscopy (XPS), UV–Vis spectrophotometry, structural and morphological techniques. Scanning electron microscopy was used to monitor the variation in the surface morphology and the related roughness. 2D Energy-dispersive X-ray spectroscopy (EDX) measurements enabled to observe the distribution of iodine on the film surface. High resolution XPS measurements were used to define the iodine anion types and the metallic iodine existence, as well as the relevant concentrations based on the binding energies. The dielectric relaxation measurements were carried out over the frequency range from 0.1 to 107 Hz and temperature range from 155 to 330 K. Dielectric loss (ε′′) curves were fitted to the Havriliak–Negami (HN) model for one and/or two relaxation peaks (α and β), with and without the electrical conductivity contribution term, in order to deduce the relaxation time (τ) and the dielectric strengths (Δε), in addition to the electrical conductivities (σ). The temperature-dependent data of β- and σ- relaxations follow the law of Arrhenius thermal activation indicating the presence of typical glass-forming polymers. Δε of α-relaxation obeys the curvature pattern of Vogel-Tammann-Fulcher (VTF) thermal activation law. The electrical conductivity of the system increases 6000 folds by doping PEO with 5 wt% of iodine at the same temperature (293 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jin X, Zhang S, Runt JJP (2002) Observation of a fast dielectric relaxation in semi-crystalline poly (ethylene oxide). Polymer 43:6247–6254

    Article  CAS  Google Scholar 

  2. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–5163

    Article  CAS  PubMed  Google Scholar 

  3. Lin D, Yuen PY, Liu Y, Liu W, Liu N, Dauskardt RH, Cui Y (2018) A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater 30(32):1802661

    Article  CAS  Google Scholar 

  4. Aldalur I, Martinez-Ibañez M, Piszcz M, Rodriguez-Martinez LM, Zhang H, Armand M (2018) Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes. J Power Sour 383:144–149

    Article  CAS  Google Scholar 

  5. Money BK, Hariharan K, Swenson J (2012) A dielectric relaxation study of nanocomposite polymer electrolytes. Solid State Ion 225:346–349

    Article  CAS  Google Scholar 

  6. Money BK, Swenson J (2013) Dynamics of poly (ethylene oxide) around its melting temperature. Macromolecules 46:6949–6954

    Article  CAS  Google Scholar 

  7. Chand S, Mehendru P (1986) Electrical conduction in PVF2 films: the effect of iodine. J Phys D Appl Phys 19:857

    Article  CAS  Google Scholar 

  8. Dai L, Maua AWH, Griesser HJ, Spurling TH, Hong X, Yang Y, White JW (1995) “I2-Doping” of 1, 4-polydienes. Synth Met 69:563–566

    Article  CAS  Google Scholar 

  9. Le T-H, Kim Y, Yoon HJP (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9:150

    Article  PubMed Central  CAS  Google Scholar 

  10. Singh R, Shrivastava AK, Bajpai AK (2019) CdSe reinforced polyaniline nanocomposites as superior material for future applications as gas sensor and diodes. Mater Res Express 6:1250a9

    Article  CAS  Google Scholar 

  11. Palácio G et al (2018) Coupling photoluminescence and ionic conduction Properties using the different coordination sites of ureasil-polyether hybrid materials. ACS Appl Mater Interfaces 10:37364–37373

    Article  PubMed  CAS  Google Scholar 

  12. Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley, NewJersey

    Google Scholar 

  13. Lyday PA (2005) Iodine and iodine compounds. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, Weinheim

    Google Scholar 

  14. Emsley J (2011) Nature’s building blocks: an AZ guide to the elements. Oxford University Press, England

    Google Scholar 

  15. Ibrahim S, Rehim MA, Turky G (2019) Dielectric study of polystyrene/polycaprolactone composites prepared by miniemulsion polymerization. J Phys Chem Solids 119:56–66

    Article  CAS  Google Scholar 

  16. Seto M, Maeda Y, Matsuyama T, Yamaoka H, Sakai H (1993) Mössbauer spectroscopic study of fullerene C60 doped with iodine. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 76:348–349

    Article  Google Scholar 

  17. Darwish AG, Ghoneim AM, Hassaan MY, Shehata OS, Turky GM (2019) Impact of RGO on electrical and dielectric properties of Co3O4/RGO nanocomposite. Mater Res Express 6:105039

    Article  CAS  Google Scholar 

  18. Moussa MA, Ghoneim AM, Abdel Rehim MH, Khairy SA, Soliman MA, Turky GM (2017) Relaxation dynamic and electrical mobility for poly(methyl methacrylate)-polyaniline composites. J Appl Polym Sci 134:45415–45425

    Article  CAS  Google Scholar 

  19. Telfah A, Jafar MMAG, Jumh I, Ahmad MJA, Lambert J, Hergenröder R (2018) Identification of relaxation processes in pure polyethylene oxide (PEO) films by the dielectric permittivity and electric modulus formalisms. Polym Adv Technol 29:1974–1987

    Article  CAS  Google Scholar 

  20. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH, New York

    Google Scholar 

  21. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  CAS  Google Scholar 

  22. Cai W, Österberg T, Jafari MJ, Musumeci C, Wang C, Zuo G, Yin X, Luo X, Johansson J, Kemerink M, Ouyang L, Ederth T, Inganäs O (2020) Dedoping-induced interfacial instability of poly(ethylene imine)s-treated PEDOT:PSS as a low-work-function electrode. J Mater Chem C 8:328–336

    Article  CAS  Google Scholar 

  23. Mizuno M, Tanaka J, Harada I (1981) Electronic spectra and structures of polyiodide chain complexes. J Phys Chem 85:1789–1794

    Article  CAS  Google Scholar 

  24. Gutierrez J, Tercjak A, Garcia I, Peponi L, Mondragon I (2008) Hybrid titanium dioxide/Ps-b-PEO block copolymer nanocomposites based on sol–gel synth- esis. Nanotechnology 19:155607

    Article  CAS  PubMed  Google Scholar 

  25. Voigt EM (1968) Absorption maxima of the visible band of iodine in different groups of solvents. J Phys Chem 72:3300–3305

    Article  CAS  Google Scholar 

  26. Naorem H, Devi SD (2013) Spectrophotometric determination of the formation constant of triiodide ions in aqueous-organic solvent or polymer mixed media both in absence and presence of a surfactant. Spectrochim Acta Part A Mol Biomol Spectrosc 101:67–73

    Article  CAS  Google Scholar 

  27. Guttman DE, Higuchi T (1955) Study of possible complex formation between macromolecules and certain pharmaceuticals. IX. Formation of iodine-iodide complexes with polyethylene glycol. J Am Pharm Assoc Am Pharm Assoc 44:668–678

    Article  CAS  PubMed  Google Scholar 

  28. Pullen S, Walker LA, Sension RJ (1995) Femtosecond studies of the iodine–mesitylene charge-transfer complex. J Chem Phys 103:7877–7886

    Article  CAS  Google Scholar 

  29. Pron A, Rannou P (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog Polym Sci 27:135–190

    Article  CAS  Google Scholar 

  30. Bredas J-L (1985) Relationship between band gap and bond length alternation in organic conjugated polymers. J Chem Phys 82:3808–3811

    Article  CAS  Google Scholar 

  31. Bredas JL, Street GB (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18:309–315

    Article  CAS  Google Scholar 

  32. Brédas J-L, Scott JC, Yakushi K, Street GB (1984) Polarons and bipolarons in polypyrrole: evolution of the band structure and optical spectrum upon doing. Phys Rev B 30:1023

    Article  Google Scholar 

  33. Jarząbek B, Hajduk B, Jurusik J, Domański M (2017) In situ optical studies of thermal stability of iodine-doped polyazomethine thin films. Polym Test 59:230–236

    Article  CAS  Google Scholar 

  34. Rajendra Kumar G, Dennyson Savariraj A, Karthick SN, Selvam S, Balamuralitharan B, Kim H-J, Viswanathan KK, Vijaykumar M, Prabakar K (2016) Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Phys Chem Chem Phys 18:7284–7292

    Article  CAS  PubMed  Google Scholar 

  35. Ng T-W, Chan C-Y, Lo M-F, Guan ZQ, Lee C-S (2015) Formation chemistry of perovskites with mixed iodide/ chloride content and the implications on charge transport properties. J Mater Chem A 3:9081–9085

    Article  CAS  Google Scholar 

  36. Zhang J, Song T, Zhang Z, Ding K, Huang F, Sun B (2015) Layered ultrathin PbI 2 single crystals for high sensitivity flexible photodetectors. J Mater Chem C 3:4402–4406

    Article  CAS  Google Scholar 

  37. Salaneck WR, Thomas HR, Bigelow RW, Duke CB, Plummer EW, Heeger AJ, MacDiarmid AG (1980) Photoelectron spectroscopy of iodine-doped polyacetylene. J Chem Phys 72:3674–3678

    Article  CAS  Google Scholar 

  38. Sherwood PMA (1976) NIST X-ray photoelectron spectroscopy database. J Chem Soc Faraday Trans II 72:1806

    Google Scholar 

  39. Bhat SN, Dwivedi R (1980) Transference number of charge-transfer complexes in solutions: methanol-iodine and ethanol-iodine, Proc. Indian Acad. Sci. (Chem. Sci.) 89:337–340

  40. Tristant D, Puech P, Gerber IC (2015) Theoretical study of polyiodide formation and stability on monolayer and bilayer graphene. Phys Chem Chem Phys 17:30045–30051

    Article  CAS  PubMed  Google Scholar 

  41. Hemalatha S, Chandani B, Balasubramanian D (1979) Complexation of molecular iodine by linear poly (ethylene glycol). Spectrosc Lett 12:535–541

    Article  CAS  Google Scholar 

  42. Dave G, Kanchan DK (2018) A. Physics, Dielectric relaxation and modulus studies of PEO-PAM blend based sodium salt electrolyte system. Indian J. Pure Appl. Phys 56:978–988

    Google Scholar 

  43. Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater 29:17903–17920

    Article  CAS  Google Scholar 

  44. Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion-conducting polymer nanocomposite. Ionics 17:135–143

    Article  CAS  Google Scholar 

  45. Arya A, Sharma AL (2019) Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J Mater Sci 54:7131–7155

    Article  CAS  Google Scholar 

  46. Yang K, Huang X, Huang Y, Xie L, Jiang P (2013) Fluoro-Polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater 25:2327–2338

    Article  CAS  Google Scholar 

  47. Martínez-Tong DE, Miccio LA, Alegria A (2017) Ionic transport in the amorphous phase of semicrystalline polyethylene oxide thin films. Soft Matter 13:5597

    Article  PubMed  Google Scholar 

  48. Jiang B, Peng H, Wu W, Jia Y, Zhang Y (2016) Numerical simulation and experimental investigation of the viscoelastic heating mechanism in ultrasonic plasticizing of amorphous polymers for micro injection molding. Polymers 8:199

    Article  PubMed Central  CAS  Google Scholar 

  49. Balani K, Verma V, Agarwal A, Narayan R (2014) Physical, thermal, and mechanical properties of polymers. Wiley, United States

    Book  Google Scholar 

  50. Sapri MNZM, Ahmad AH (2015) Conductivity and dielectric studies of pure and doped poly (Ethylene oxide)(PEO) solid polymer electrolyte films. Jurnal Teknologi 76:47–51

    Google Scholar 

  51. Schönherr H, Frank CWJM (2003) Ultrathin films of poly (ethylene oxides) on oxidized silicon. 1. Spectroscopic characterization of film structure and crystallization kinetics. Macromolecules 36:1188–1198

    Article  CAS  Google Scholar 

  52. Ji J, Li B, Zhong W-H (2010) Effects of a block copolymer as multifunctional fillers on ionic conductivity, mechanical properties, and dimensional stability of solid polymer electrolytes. J. Phys. Chem. B 114:13637–13643

    Article  CAS  PubMed  Google Scholar 

  53. Money BK, Hariharan K, Swenson JJSSI (2014) Relation between structural and conductivity relaxation in PEO and PEO based electrolytes. Solid State Ion 262:785–789

    Article  CAS  Google Scholar 

  54. Sengwar RJ, Kaur K (2003) Dielectric properties and a.c. electrical conductivity of aqueous solution grown pure and iodine doped poly (vinyl alcohol) films. Indian J Eng Mater Sci (IJEMS) 10:492–497

    Google Scholar 

  55. Levit R, Martinez-Garcia JC, Ochoa DA et al (2019) The generalized Vogel-Fulcher-Tamman equation for describing the dynamics of relaxor ferroelectrics. Sci Rep 9:12390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Seto M, Maeda Y, Matsuyama T, Yamaoka H, Sakai H (1993) Mössbauer spectroscopic study of fullerene C60 doped with iodine. Nucl Instrum Methods Phys Res, Sect B 76:348–349

    Article  Google Scholar 

  57. Karlsen EM, Spanget-Larsen J (2009) FTIR investigation of the reaction between pyridine and iodine in a polyethylene host. Form of N-Iodopyridinium Polyiodide, Chem Phys Lett 473:227–232

    Article  CAS  Google Scholar 

  58. Pradhan DK, Choudhary R, Samantaray BJEPL (2008) Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes. Express Polym Lett 2:630–638

    Article  CAS  Google Scholar 

  59. Zhou Y, Wanga Q (2020) Advanced polymer dielectrics for high temperature capacitive energy storage. J Appl Phys 127:240902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jordan University of Science and Technology; this research was supported by the Deanship of Scientific Research under Grant Number: 420/2019. The authors extend thanks to the Lehrstuhl Experimentelle Physik III, Technische Universität Dortmund, Germany for offering the measurements via the broadband impedance spectroscopy and the full technical and experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Telfah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telfah, A., Al-Akhras, MA., Al-Izzy, K.A. et al. Dielectric relaxation, XPS and structural studies of polyethylene oxide/iodine complex composite films. Polym. Bull. 79, 3759–3778 (2022). https://doi.org/10.1007/s00289-021-03593-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03593-1

Keywords

Navigation